IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i6p901-d213353.html
   My bibliography  Save this article

Empirical Framework for a Relative Sustainability Evaluation of Urbanization on the Water–Energy–Food Nexus Using Simultaneous Equation Analysis

Author

Listed:
  • Chihhao Fan

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Chun-Yueh Lin

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Ming-Che Hu

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

Abstract

The water–energy–food (WEF) nexus attracts much attention due to the elevated public concern regarding environmental conservation and sustainability. As we head into a new era of civilization, population increase and modernized lifestyles have led to an increasing need for water, energy, and food. However, severe hydrological precipitation significantly impacts agricultural harvest, and such influence becomes more apparent under the influence of climate change. Meanwhile, the major method of electricity generation (i.e., fossil fuel burning) has a negative impact on the environment. These inevitable threats are crucial and have to be dealt with for a society on the road towards sustainability. In the present study, an integrated evaluation of the WEF nexus was conducted for two areas with different levels of urbanization using empirical multiple linear regression in a simultaneous equation model (SEM). By incorporating the collected data into the SEM, the weighting coefficient of each identified variable was obtained, and the nexus implication was assessed in model simulation at different scenarios considering the population growth, agro-technology advancement, energy structure improvement, and available water resources. In the simulated results, three observations were found: (1) the rural area is more sustainable than the urban one; (2) the sustainability for both the investigated areas is significantly subject to their water supply and demand; and (3) food production was found to have a less important effect on the sustainable development of the urban area. This study identified the key factors in the WEF nexus exploration, which are economically and environmentally important for resource allocation. An empirical model was developed to correlate sustainable achievement with WEF management, as well as strategic policies that should be implemented under the pressure of urbanization.

Suggested Citation

  • Chihhao Fan & Chun-Yueh Lin & Ming-Che Hu, 2019. "Empirical Framework for a Relative Sustainability Evaluation of Urbanization on the Water–Energy–Food Nexus Using Simultaneous Equation Analysis," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:6:p:901-:d:213353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/6/901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/6/901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    2. Ozturk, Ilhan, 2017. "The dynamic relationship between agricultural sustainability and food-energy-water poverty in a panel of selected Sub-Saharan African Countries," Energy Policy, Elsevier, vol. 107(C), pages 289-299.
    3. Yan, Tingting & Wang, Jinxia & Huang, Jikun, 2015. "Urbanization, agricultural water use, and regional and national crop production in China," Ecological Modelling, Elsevier, vol. 318(C), pages 226-235.
    4. Ozturk, Ilhan, 2015. "Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries," Energy, Elsevier, vol. 93(P1), pages 999-1010.
    5. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    6. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    7. Hsiao, Cheng & Zhou, Qiankun, 2015. "Statistical inference for panel dynamic simultaneous equations models," Journal of Econometrics, Elsevier, vol. 189(2), pages 383-396.
    8. Zhang, Jie & Campana, Pietro Elia & Yao, Tian & Zhang, Yang & Lundblad, Anders & Melton, Forrest & Yan, Jinyue, 2018. "The water-food-energy nexus optimization approach to combat agricultural drought: a case study in the United States," Applied Energy, Elsevier, vol. 227(C), pages 449-464.
    9. Ge, Jianping & Lei, Yalin & Tokunaga, Suminori, 2014. "Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China," Energy, Elsevier, vol. 65(C), pages 346-356.
    10. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    11. Tiba, Sofien & Frikha, Mohamed, 2018. "Income, trade openness and energy interactions: Evidence from simultaneous equation modeling," Energy, Elsevier, vol. 147(C), pages 799-811.
    12. Rigolot, C. & de Voil, P. & Douxchamps, S. & Prestwidge, D. & Van Wijk, M. & Thornton, P.K. & Rodriguez, D. & Henderson, B. & Medina, D. & Herrero, M., 2017. "Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso," Agricultural Systems, Elsevier, vol. 151(C), pages 217-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfei Chen & Tonghui Ding & Huimin Wang & Xiaoya Yu, 2019. "Research on Total Factor Productivity and Influential Factors of the Regional Water–Energy–Food Nexus: A Case Study on Inner Mongolia, China," IJERPH, MDPI, vol. 16(17), pages 1-21, August.
    2. Junfei Chen & Ziyue Zhou & Lin Chen & Tonghui Ding, 2020. "Optimization of Regional Water-Energy-Food Systems Based on Interval Number Multi-Objective Programming: A Case Study of Ordos, China," IJERPH, MDPI, vol. 17(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    2. Adenike K. Opejin & Rimjhim M. Aggarwal & Dave D. White & J. Leah Jones & Ross Maciejewski & Giuseppe Mascaro & Hessam S. Sarjoughian, 2020. "A Bibliometric Analysis of Food-Energy-Water Nexus Literature," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    3. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    6. Banhidarah, Abdullah Khamis & Al-Sumaiti, Ameena Saad & Wescoat, James L. & Nguyen, Hoach The, 2020. "Electricity-water usage for sustainable development: An analysis of United Arab Emirates farms," Energy Policy, Elsevier, vol. 147(C).
    7. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    8. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    9. Víctor Correa-Porcel & Laura Piedra-Muñoz & Emilio Galdeano-Gómez, 2021. "Water–Energy–Food Nexus in the Agri-Food Sector: Research Trends and Innovating Practices," IJERPH, MDPI, vol. 18(24), pages 1-31, December.
    10. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    11. Lu, Shibao & Zhang, Xiaoling & Peng, Huarong & Skitmore, Martin & Bai, Xiao & Zheng, Zhihong, 2021. "The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Yeray Hernandez & Gustavo Naumann & Serafin Corral & Paulo Barbosa, 2020. "Water Footprint Expands with Gross Domestic Product," Sustainability, MDPI, vol. 12(20), pages 1-6, October.
    13. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    14. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    15. Sayef Bakari & Sofien Tiba & Nissar Fakraoui, 2019. "Does Domestic Investment Contribute To Economic Growth In Uruguay? What Did The Empirical Facts Say?," Journal of Smart Economic Growth, , vol. 4(2), pages 53-69, September.
    16. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.
    17. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    18. Maxwell Chukwudi Udeagha & Marthinus Christoffel Breitenbach, 2023. "The Role of Fiscal Decentralization in Limiting CO2 Emissions in South Africa," Biophysical Economics and Resource Quality, Springer, vol. 8(3), pages 1-30, September.
    19. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. repec:mth:ijafr8:v:8:y:2018:i:3:p:29-38 is not listed on IDEAS
    21. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:6:p:901-:d:213353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.