IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p460-d203668.html
   My bibliography  Save this article

Current and Emerging Disaster Risks Perceptions in Oceania: Key Stakeholders Recommendations for Disaster Management and Resilience Building

Author

Listed:
  • Joseph Cuthbertson

    (Disaster Resilience Initiative, Accident Research Centre, Clayton, Monash University, Melbourne 3800, Australia)

  • Jose M. Rodriguez-Llanes

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Andrew Robertson

    (Western Australia Department of Health, East Perth, WA 6004, Australia)

  • Frank Archer

    (Disaster Resilience Initiative, Accident Research Centre, Clayton, Monash University, Melbourne 3800, Australia)

Abstract

Identification and profiling of current and emerging disaster risks is essential to inform effective disaster risk management practice. Without clear evidence, readiness to accept future threats is low, resulting in decreased ability to detect and anticipate these new threats. A consequential decreased strategic planning for mitigation, adaptation or response results in a lowered resilience capacity. This study aimed to investigate threats to the health and well-being of societies associated with disaster impact in Oceania. The study used a mixed methods approach to profile current and emerging disaster risks in selected countries of Oceania, including small and larger islands. Quantitative analysis of the International Disaster Database (EM-DAT) provided historical background on disaster impact in Oceania from 2000 to 2018. The profile of recorded events was analyzed to describe the current burden of disasters in the Oceania region. A total of 30 key informant interviews with practitioners, policy managers or academics in disaster management in the Oceania region provided first-hand insights into their perceptions of current and emerging threats, and identified opportunities to enhance disaster risk management practice and resilience in Oceania. Qualitative methods were used to analyze these key informant interviews. Using thematic analysis, we identified emerging disaster risk evidence from the data and explored new pathways to support decision-making on resilience building and disaster management. We characterized perceptions of the nature and type of contemporary and emerging disaster risk with potential impacts in Oceania. The study findings captured not only traditional and contemporary risks, such as climate change, but also less obvious ones, such as plastic pollution, rising inequality, uncontrolled urbanization, and food and water insecurity, which were perceived as contributors to current and/or future crises, or as crises themselves. The findings provided insights into how to improve disaster management more effectively, mainly through bottom-up approaches and education to increase risk-ownership and community action, enhanced political will, good governance practices and support of a people-centric approach.

Suggested Citation

  • Joseph Cuthbertson & Jose M. Rodriguez-Llanes & Andrew Robertson & Frank Archer, 2019. "Current and Emerging Disaster Risks Perceptions in Oceania: Key Stakeholders Recommendations for Disaster Management and Resilience Building," IJERPH, MDPI, vol. 16(3), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:460-:d:203668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    2. Flage, R. & Aven, T., 2015. "Emerging risk – Conceptual definition and a relation to black swan type of events," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 61-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfei Chen & Qian Li & Huimin Wang & Menghua Deng, 2019. "A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China," IJERPH, MDPI, vol. 17(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    2. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    3. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    4. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    5. Daniele Martini & Pietro Bezzini & Michela Longo, 2024. "Environmental Impact of Electrification on Local Public Transport: Preliminary Study," Energies, MDPI, vol. 17(23), pages 1-23, November.
    6. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    7. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    8. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    9. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    10. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    11. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    12. Neha Sinha, 2012. "Climate Change Issues and Global Negotiations," Insight on Africa, , vol. 4(1), pages 35-57, January.
    13. Zhihui Liu & Yongna Meng & Hao Xiang & Yuanan Lu & Suyang Liu, 2020. "Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    14. Rachel Lowe & Markel García-Díez & Joan Ballester & James Creswick & Jean-Marie Robine & François R. Herrmann & Xavier Rodó, 2016. "Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-seasonal to Seasonal Forecasting and Climate Services," IJERPH, MDPI, vol. 13(2), pages 1-13, February.
    15. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    16. V. Savo & K. E. Kohfeld & J. Sillmann & C. Morton & J. Bailey & A. S. Haslerud & C. Le Quéré & D. Lepofsky, 2024. "Using human observations with instrument-based metrics to understand changing rainfall patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    18. Hu, Saiquan & Jia, Xiao & Zhang, Xiaojin & Zheng, Xiaoying & Zhu, Junming, 2017. "How political ideology affects climate perception: Moderation effects of time orientation and knowledge," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 124-131.
    19. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    20. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:460-:d:203668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.