IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i23p4690-d290616.html
   My bibliography  Save this article

Refrigeration Capacity and Effect of Ageing on the Operation of Cellulose Evaporative Cooling Pads, by Wind Tunnel Analysis

Author

Listed:
  • Antonio Franco-Salas

    (ETSIA, University of Sevilla, Ctra. de Utrera km, 1, 41013 Sevilla, Spain)

  • Araceli Peña-Fernández

    (CIAIMBITAL Research Centre, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain)

  • Diego Luis Valera-Martínez

    (CIAIMBITAL Research Centre, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain)

Abstract

This study investigates the temperature reduction capacity and water consumption of a fan-pad system installed in a greenhouse located in the coastal regions of Almería. The suitability of this system for coastal zones with high environmental humidity during the summer is analyzed. Historical temperature and relative humidity series are studied, obtaining the thermal difference and maximum, medium, and minimum monthly water consumption of the pads based on the operation data of the pads. Despite the high relative humidity of the air in the hottest hours of the day, a decrease of 5.92 °C in the mean temperature and a water consumption of 13.55 l/h per square meter of an evaporative cooling pad are obtained in the month of August. Additionally, the operation of a cellulose evaporative cooling pad installed for 3 years in a greenhouse is analyzed in a wind tunnel and compared with that of a new pad of the same model. Over time and with low maintenance, the porosity of the pad decreases due to salt incrustation. The salt incrustation makes airflow more difficult in the pad, increasing the pressure drop by 170.04%; however, the air saturation efficiency of the pad increases by 6.6% due to the greater contact time between the air and the water.

Suggested Citation

  • Antonio Franco-Salas & Araceli Peña-Fernández & Diego Luis Valera-Martínez, 2019. "Refrigeration Capacity and Effect of Ageing on the Operation of Cellulose Evaporative Cooling Pads, by Wind Tunnel Analysis," IJERPH, MDPI, vol. 16(23), pages 1-11, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4690-:d:290616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/23/4690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/23/4690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W. & Zhou, P., 2015. "Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates," Applied Energy, Elsevier, vol. 138(C), pages 291-301.
    2. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    3. Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
    4. Antonio Franco & Diego L. Valera & Araceli Peña, 2014. "Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads," Energies, MDPI, vol. 7(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    2. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    3. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    4. Pang, S.C. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A., 2013. "Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 836-847.
    5. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    6. Tomasz Jakubowski & Sedat Boyacı & Joanna Kocięcka & Atılgan Atılgan, 2024. "Determination of Performance of Different Pad Materials and Energy Consumption Values of Direct Evaporative Cooler," Energies, MDPI, vol. 17(12), pages 1-22, June.
    7. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    8. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    9. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    11. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    12. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    13. Entezari, A. & Wang, R.Z. & Zhao, S. & Mahdinia, E. & Wang, J.Y. & Tu, Y.D. & Huang, D.F., 2019. "Sustainable agriculture for water-stressed regions by air-water-energy management," Energy, Elsevier, vol. 181(C), pages 1121-1128.
    14. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    15. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    16. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    17. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    18. Nada, S.A. & Elattar, H.F. & Mahmoud, M.A. & Fouda, A., 2020. "Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers," Energy, Elsevier, vol. 211(C).
    19. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    20. Doo-Yong Park & Hyun-Je Lee & Su-In Yun & Sang-Min Choi, 2021. "Simulation Analysis of Daylight Characteristics and Cooling Load Based on Performance Test of Covering Materials Used in Smart Farms," Energies, MDPI, vol. 14(19), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4690-:d:290616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.