IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i22p4522-d287422.html
   My bibliography  Save this article

Dynamic Estimation of Individual Exposure Levels to Air Pollution Using Trajectories Reconstructed from Mobile Phone Data

Author

Listed:
  • Mingxiao Li

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of the Chinese Academy of Sciences, Beijing 100049, China
    Geospatial Data Science Lab, Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Song Gao

    (Geospatial Data Science Lab, Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Feng Lu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    The Academy of Digital China, Fuzhou University, Fuzhou 350002, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China)

  • Huan Tong

    (UCL Institute for Environmental Design and Engineering, University College London, London WC1E 6BT, UK)

  • Hengcai Zhang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    The Academy of Digital China, Fuzhou University, Fuzhou 350002, China)

Abstract

The spatiotemporal variability in air pollutant concentrations raises challenges in linking air pollution exposure to individual health outcomes. Thus, understanding the spatiotemporal patterns of human mobility plays an important role in air pollution epidemiology and health studies. With the advantages of massive users, wide spatial coverage and passive acquisition capability, mobile phone data have become an emerging data source for compiling exposure estimates. However, compared with air pollution monitoring data, the temporal granularity of mobile phone data is not high enough, which limits the performance of individual exposure estimation. To mitigate this problem, we present a novel method of estimating dynamic individual air pollution exposure levels using trajectories reconstructed from mobile phone data. Using the city of Shanghai as a case study, we compared three different types of exposure estimates using (1) reconstructed mobile phone trajectories, (2) recorded mobile phone trajectories, and (3) residential locations. The results demonstrate the necessity of trajectory reconstruction in exposure and health risk assessment. Additionally, we measure the potential health effects of air pollution from both individual and geographical perspectives. This helped reveal the temporal variations in individual exposures and the spatial distribution of residential areas with high exposure levels. The proposed method allows us to perform large-area and long-term exposure estimations for a large number of residents at a high spatiotemporal resolution, which helps support policy-driven environmental actions and reduce potential health risks.

Suggested Citation

  • Mingxiao Li & Song Gao & Feng Lu & Huan Tong & Hengcai Zhang, 2019. "Dynamic Estimation of Individual Exposure Levels to Air Pollution Using Trajectories Reconstructed from Mobile Phone Data," IJERPH, MDPI, vol. 16(22), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4522-:d:287422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/22/4522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/22/4522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwan, Mei-Po, 2009. "From place-based to people-based exposure measures," Social Science & Medicine, Elsevier, vol. 69(9), pages 1311-1313, November.
    2. Chen, X. & Kwan, M.-P., 2015. "Contextual uncertainties, human mobility, and perceived food environment: The uncertain geographic context problem in food access research," American Journal of Public Health, American Public Health Association, vol. 105(9), pages 1734-1737.
    3. Pier Mannuccio Mannucci & Massimo Franchini, 2017. "Health Effects of Ambient Air Pollution in Developing Countries," IJERPH, MDPI, vol. 14(9), pages 1-8, September.
    4. Emilio Zagheni & Ingmar Weber, 2015. "Demographic research with non-representative internet data," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 13-25, April.
    5. EunHye Yoo & C. Rudra & M. Glasgow & L. Mu, 2015. "Geospatial Estimation of Individual Exposure to Air Pollutants: Moving from Static Monitoring to Activity-Based Dynamic Exposure Assessment," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(5), pages 915-926, September.
    6. Amit Birenboim & Noam Shoval, 2016. "Mobility Research in the Age of the Smartphone," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(2), pages 283-291, March.
    7. Bin Chen & Yimeng Song & Tingting Jiang & Ziyue Chen & Bo Huang & Bing Xu, 2018. "Real-Time Estimation of Population Exposure to PM 2.5 Using Mobile- and Station-Based Big Data," IJERPH, MDPI, vol. 15(4), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Zhang & Lu Yang & Hao Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Yongjie Wei & Ning Tang, 2021. "Assessing Approaches of Human Inhalation Exposure to Polycyclic Aromatic Hydrocarbons: A Review," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    2. Tiezhong Liu & Huyuan Zhang & Hubo Zhang, 2020. "The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals," IJERPH, MDPI, vol. 17(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengxiang Zhao & Mei-Po Kwan & Suhong Zhou, 2018. "The Uncertain Geographic Context Problem in the Analysis of the Relationships between Obesity and the Built Environment in Guangzhou," IJERPH, MDPI, vol. 15(2), pages 1-20, February.
    2. Jue Wang & Mei-Po Kwan, 2018. "An Analytical Framework for Integrating the Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment: A Study on the Relationship between Food Environment Exposu," IJERPH, MDPI, vol. 15(9), pages 1-24, September.
    3. Qiujun Wei & Jiangfeng She & Shuhua Zhang & Jinsong Ma, 2018. "Using Individual GPS Trajectories to Explore Foodscape Exposure: A Case Study in Beijing Metropolitan Area," IJERPH, MDPI, vol. 15(3), pages 1-20, February.
    4. Eun-hye Yoo & Qiang Pu & Youngseob Eum & Xiangyu Jiang, 2021. "The Impact of Individual Mobility on Long-Term Exposure to Ambient PM 2.5 : Assessing Effect Modification by Travel Patterns and Spatial Variability of PM 2.5," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    5. Xiang Wu & Lindong Liu & Xiaowei Luo & Jianwu Chen & Jingwen Dai, 2018. "Study on Flow Field Characteristics of the 90° Rectangular Elbow in the Exhaust Hood of a Uniform Push–Pull Ventilation Device," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    6. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    7. Myung-Jae Hwang & Jong-Hun Kim & Hae-Kwan Cheong, 2020. "Short-Term Impacts of Ambient Air Pollution on Health-Related Quality of Life: A Korea Health Panel Survey Study," IJERPH, MDPI, vol. 17(23), pages 1-11, December.
    8. Barslund, Mikkel & Busse, Matthias, 2016. "How mobile is tech talent? A case study of IT professionals based on data from LinkedIn," CEPS Papers 11692, Centre for European Policy Studies.
    9. Shearer, Cindy & Rainham, Daniel & Blanchard, Chris & Dummer, Trevor & Lyons, Renee & Kirk, Sara, 2015. "Measuring food availability and accessibility among adolescents: Moving beyond the neighbourhood boundary," Social Science & Medicine, Elsevier, vol. 133(C), pages 322-330.
    10. Jagriti Saini & Maitreyee Dutta & Gonçalo Marques, 2020. "Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review," IJERPH, MDPI, vol. 17(14), pages 1-22, July.
    11. Mingguang Liu & Jue Zhang & Gaoyang Li, 2024. "Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China," Energies, MDPI, vol. 17(15), pages 1-24, August.
    12. Ahmad Alkhatib & Lawrence Achilles Nnyanzi & Brian Mujuni & Geofrey Amanya & Charles Ibingira, 2021. "Preventing Multimorbidity with Lifestyle Interventions in Sub-Saharan Africa: A New Challenge for Public Health in Low and Middle-Income Countries," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
    13. Marta Poblet & Esteban García-Cuesta & Pompeu Casanovas, 2018. "Crowdsourcing roles, methods and tools for data-intensive disaster management," Information Systems Frontiers, Springer, vol. 20(6), pages 1363-1379, December.
    14. Zhuoran Shan & Hongfei Li & Haolan Pan & Man Yuan & Shen Xu, 2022. "Spatial Equity of PM 2.5 Pollution Exposures in High-Density Metropolitan Areas Based on Remote Sensing, LBS and GIS Data: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    15. Wei Chen & Jian Chen & Guopeng Yin, 2022. "Exploring side effects of ridesharing services in urban China: role of pollution–averting behavior," Electronic Commerce Research, Springer, vol. 22(4), pages 1007-1034, December.
    16. Marc Fadel & Eliane Farah & Nansi Fakhri & Frédéric Ledoux & Dominique Courcot & Charbel Afif, 2024. "A Comprehensive Review of PM-Related Studies in Industrial Proximity: Insights from the East Mediterranean Middle East Region," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    17. Christopher R. Browning & Catherine A. Calder & Jodi L. Ford & Bethany Boettner & Anna L. Smith & Dana Haynie, 2017. "Understanding Racial Differences in Exposure to Violent Areas," The ANNALS of the American Academy of Political and Social Science, , vol. 669(1), pages 41-62, January.
    18. Mattia Acito & Cristina Fatigoni & Milena Villarini & Massimo Moretti, 2022. "Cytogenetic Effects in Children Exposed to Air Pollutants: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 19(11), pages 1-17, May.
    19. Daniela Varrica & Maria Grazia Alaimo, 2022. "Determination of Water-Soluble Trace Elements in the PM 10 and PM 2.5 of Palermo Town (Italy)," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    20. Sylvester Dodzi Nyadanu & Gizachew Assefa Tessema & Ben Mullins & Bernard Kumi-Boateng & Michelle Lee Bell & Gavin Pereira, 2020. "Ambient Air Pollution, Extreme Temperatures and Birth Outcomes: A Protocol for an Umbrella Review, Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 17(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4522-:d:287422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.