IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i21p4138-d280745.html
   My bibliography  Save this article

Phenomenological and Thermodynamic Model of Gas Exchanges in the Placenta during Pregnancy: A Case Study of Intoxication of Carbon Monoxide

Author

Listed:
  • Juliana Rangel Cenzi

    (School of Mechanical Engineering, University of Campinas, Mendeleyev St., 200 - Cidade Universitária, 13083-970 Campinas, Brazil
    These authors contributed equally to this work.)

  • Cyro Albuquerque

    (Department of Mechanical Engineering, Centro Universitário da FEI, 09850-901 São Bernardo do Campo, Brazil
    These authors contributed equally to this work.)

  • Carlos Eduardo Keutenedjian Mady

    (School of Mechanical Engineering, University of Campinas, Mendeleyev St., 200 - Cidade Universitária, 13083-970 Campinas, Brazil
    These authors contributed equally to this work.)

Abstract

The present work simulates the transport of oxygen, carbon dioxide, and carbon monoxide between a fetus’s circulatory system and the mother’s. The organ responsible for this exchange is the placenta. Carbon monoxide is a common air pollutant, and it impacts the physiological conditions even in low concentration. The impacts of carbon monoxide are especially dangerous for pregnant women, fetuses, and newborn babies. A model of carbon monoxide transport, from the literature, is modified to simulate a pregnant woman (original model was a male), therefore changing some parameters to express the adjusted respiratory system. It was considered the gas exchange in the placenta, to evaluate the concentration of these different gases in the fetus arterial and venous blood. Three methods of the exergy analysis are implemented for both mother and fetus respiratory systems, aiming at the comparison with the respiratory system of a male adult. The destroyed exergy of the literature did not have the same trend as the models proposed in this article, taking into consideration the hemoglobin reactions. In contrast, the entropy generation associated only with the diffusion transport phenomena was one order of magnitude lower than the other methods. The placenta destroyed exergy rate is significantly higher compared to the irreversibilities of the mother’s respiratory system. One possible explanation is the fact that the placenta has other physiological functions than gas transportation.

Suggested Citation

  • Juliana Rangel Cenzi & Cyro Albuquerque & Carlos Eduardo Keutenedjian Mady, 2019. "Phenomenological and Thermodynamic Model of Gas Exchanges in the Placenta during Pregnancy: A Case Study of Intoxication of Carbon Monoxide," IJERPH, MDPI, vol. 16(21), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4138-:d:280745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/21/4138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/21/4138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.
    2. Mateja Dovjak & Masanori Shukuya & Aleš Krainer, 2018. "User-Centred Healing-Oriented Conditions in the Design of Hospital Environments," IJERPH, MDPI, vol. 15(10), pages 1-28, September.
    3. Gallo, W.L.R. & Milanez, L.F., 1990. "Choice of a reference state for exergetic analysis," Energy, Elsevier, vol. 15(2), pages 113-121.
    4. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    5. Genc, S. & Sorguven, E. & Ozilgen, M. & Aksan Kurnaz, I., 2013. "Unsteady exergy destruction of the neuron under dynamic stress conditions," Energy, Elsevier, vol. 59(C), pages 422-431.
    6. Mady, Carlos Eduardo Keutenedjian & Albuquerque, Cyro & Fernandes, Tiago Lazzaretti & Hernandez, Arnaldo José & Saldiva, Paulo Hilário Nascimento & Yanagihara, Jurandir Itizo & de Oliveira, Silvio, 2013. "Exergy performance of human body under physical activities," Energy, Elsevier, vol. 62(C), pages 370-378.
    7. Mady, Carlos Eduardo Keutenedjian & Henriques, Izabela Batista & de Oliveira, Silvio, 2015. "A thermodynamic assessment of therapeutic hypothermia techniques," Energy, Elsevier, vol. 85(C), pages 392-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.
    2. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    3. Mady, Carlos Eduardo Keutenedjian & Henriques, Izabela Batista & de Oliveira, Silvio, 2015. "A thermodynamic assessment of therapeutic hypothermia techniques," Energy, Elsevier, vol. 85(C), pages 392-402.
    4. Mateja Dovjak & Masanori Shukuya & Aleš Krainer, 2018. "User-Centred Healing-Oriented Conditions in the Design of Hospital Environments," IJERPH, MDPI, vol. 15(10), pages 1-28, September.
    5. Deshko, Valerii & Buyak, Nadia & Bilous, Inna & Voloshchuk, Volodymyr, 2020. "Reference state and exergy based dynamics analysis of energy performance of the “heat source - human - building envelope” system," Energy, Elsevier, vol. 200(C).
    6. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    7. Küçük, Kübra & Tevatia, Rahul & Sorgüven, Esra & Demirel, Yaşar & Özilgen, Mustafa, 2015. "Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii," Energy, Elsevier, vol. 83(C), pages 503-510.
    8. Letian Li & Boyang Sun & Zhuqiang Hu & Jun Zhang & Song Gao & Haifeng Bian & Jiansong Wu, 2022. "Heat Strain Evaluation of Power Grid Outdoor Workers Based on a Human Bioheat Model," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    9. García Kerdan, Iván & Morillón Gálvez, David & Raslan, Rokia & Ruyssevelt, Paul, 2015. "Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions," Energy Policy, Elsevier, vol. 77(C), pages 191-206.
    10. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    11. David Božiček & Roman Kunič & Aleš Krainer & Uroš Stritih & Mateja Dovjak, 2023. "Mutual Influence of External Wall Thermal Transmittance, Thermal Inertia, and Room Orientation on Office Thermal Comfort and Energy Demand," Energies, MDPI, vol. 16(8), pages 1-29, April.
    12. Bisio, G & Rubatto, G & Martini, R, 2000. "Heat transfer, energy saving and pollution control in UHP electric-arc furnaces," Energy, Elsevier, vol. 25(11), pages 1047-1066.
    13. Zhen Liu & Zulan Yang & Mingjie Liang & Yi Liu & Mohamed Osmani & Peter Demian, 2022. "A Conceptual Framework for Blockchain Enhanced Information Modeling for Healing and Therapeutic Design," IJERPH, MDPI, vol. 19(13), pages 1-27, July.
    14. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2017. "Assessment of thermal comfort conditions during physical exercise by means of exergy analysis," Energy, Elsevier, vol. 128(C), pages 609-617.
    15. Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2016. "Exergy-based sustainability assessment of ethanol production via Mucor indicus from fructose, glucose, sucrose, and molasses," Energy, Elsevier, vol. 98(C), pages 240-252.
    16. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    17. Sedina Kalender Smajlović & Andreja Kukec & Mateja Dovjak, 2019. "Association between Sick Building Syndrome and Indoor Environmental Quality in Slovenian Hospitals: A Cross-Sectional Study," IJERPH, MDPI, vol. 16(17), pages 1-18, September.
    18. Loganathan Salvaraji & Shamsul Bahari Shamsudin & Richard Avoi & Sahipudin Saupin & Lee Kim Sai & Surinah Binti Asan & Haidar Rizal Bin Toha & Mohammad Saffree Jeffree, 2022. "Ecological Study of Sick Building Syndrome among Healthcare Workers at Johor Primary Care Facilities," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    19. Børset, M.T. & Kolbeinsen, L. & Tveit, H. & Kjelstrup, S., 2015. "Exergy based efficiency indicators for the silicon furnace," Energy, Elsevier, vol. 90(P2), pages 1916-1921.
    20. Yang, Yulong & Wu, Kai & Long, Hongyu & Gao, Jianchao & Yan, Xu & Kato, Takeyoshi & Suzuoki, Yasuo, 2014. "Integrated electricity and heating demand-side management for wind power integration in China," Energy, Elsevier, vol. 78(C), pages 235-246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4138-:d:280745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.