IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i8p1718-d163141.html
   My bibliography  Save this article

A Novel Multiattribute Decision-Making Method Based on Point–Choquet Aggregation Operators and Its Application in Supporting the Hierarchical Medical Treatment System in China

Author

Listed:
  • Runtong Zhang

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Yuping Xing

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Jun Wang

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Xiaopu Shang

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Xiaomin Zhu

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

The hierarchical medical treatment system is an efficient way to solve the problem of insufficient and unbalanced medical resources in China. Essentially, classifying the different degrees of diseases according to the doctor’s diagnosis is a key step in pushing forward the hierarchical medical treatment system. This paper proposes a framework to solve the problem where diagnosis values are given as picture fuzzy numbers (PFNs). Point operators can reduce the uncertainty of doctor’s diagnosis and get intensive information in the process of decision making, and the Choquet integral operator can consider correlations among symptoms. In order to take full advantage of these two kinds of operators, in this paper, we firstly define some point operators under the picture fuzzy environment, and further propose a new class of picture fuzzy point–Choquet integral aggregation operators. Moreover, some desirable properties of these operators are also investigated in detail. Then, a novel approach based on these operators for multiattribute decision-making problems in the picture fuzzy context is introduced. Finally, we give an example to illustrate the applicability of the new approach in assisting hierarchical medical treatment system. This is of great significance for integrating the medical resources of the whole society and improving the service efficiency of the medical service system.

Suggested Citation

  • Runtong Zhang & Yuping Xing & Jun Wang & Xiaopu Shang & Xiaomin Zhu, 2018. "A Novel Multiattribute Decision-Making Method Based on Point–Choquet Aggregation Operators and Its Application in Supporting the Hierarchical Medical Treatment System in China," IJERPH, MDPI, vol. 15(8), pages 1-29, August.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1718-:d:163141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/8/1718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/8/1718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bingsheng Liu & Meiqing Fu & Shuibo Zhang & Bin Xue & Qi Zhou & Shiruo Zhang, 2018. "An interval-valued 2-tuple linguistic group decision-making model based on the Choquet integral operator," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(2), pages 407-424, January.
    2. Ming Tang & Huchang Liao & Zongmin Li & Zeshui Xu, 2018. "Nature Disaster Risk Evaluation with a Group Decision Making Method Based on Incomplete Hesitant Fuzzy Linguistic Preference Relations," IJERPH, MDPI, vol. 15(4), pages 1-21, April.
    3. Xiqin Wen & Mingchao Yan & Jieyu Xian & Rui Yue & Anhua Peng, 2016. "Supplier selection in supplier chain management using Choquet integral-based linguistic operators under fuzzy heterogeneous environment," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 307-330, September.
    4. Wang, Xiaoting & Triantaphyllou, Evangelos, 2008. "Ranking irregularities when evaluating alternatives by using some ELECTRE methods," Omega, Elsevier, vol. 36(1), pages 45-63, February.
    5. Joshi, Deepa & Kumar, Sanjay, 2016. "Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making," European Journal of Operational Research, Elsevier, vol. 248(1), pages 183-191.
    6. Peide Liu & Peng Wang, 2017. "Some Improved Linguistic Intuitionistic Fuzzy Aggregation Operators and Their Applications to Multiple-Attribute Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 817-850, May.
    7. Zengxian Li & Guiwu Wei & Hui Gao, 2018. "Methods for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Information," Mathematics, MDPI, vol. 6(11), pages 1-27, October.
    8. Liu, Hua-Wen & Wang, Guo-Jun, 2007. "Multi-criteria decision-making methods based on intuitionistic fuzzy sets," European Journal of Operational Research, Elsevier, vol. 179(1), pages 220-233, May.
    9. Xiao-Wen Qi & Jun-Ling Zhang & Shu-Ping Zhao & Chang-Yong Liang, 2017. "Tackling Complex Emergency Response Solutions Evaluation Problems in Sustainable Development by Fuzzy Group Decision Making Approaches with Considering Decision Hesitancy and Prioritization among Asse," IJERPH, MDPI, vol. 14(10), pages 1-35, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamal Kumar & Harish Garg, 2018. "Prioritized Linguistic Interval-Valued Aggregation Operators and Their Applications in Group Decision-Making Problems," Mathematics, MDPI, vol. 6(10), pages 1-26, October.
    2. Yuan Rong & Yi Liu & Zheng Pei, 2020. "Novel Multiple Attribute Group Decision-Making Methods Based on Linguistic Intuitionistic Fuzzy Information," Mathematics, MDPI, vol. 8(3), pages 1-30, March.
    3. Shuli Liu & Xinwang Liu, 2016. "A Sample Survey Based Linguistic MADM Method with Prospect Theory for Online Shopping Problems," Group Decision and Negotiation, Springer, vol. 25(4), pages 749-774, July.
    4. Dheeraj Kumar Joshi & Ismat Beg & Sanjay Kumar, 2018. "Hesitant Probabilistic Fuzzy Linguistic Sets with Applications in Multi-Criteria Group Decision Making Problems," Mathematics, MDPI, vol. 6(4), pages 1-20, March.
    5. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    6. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    7. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    8. Ouyang, Yao & Pedrycz, Witold, 2016. "A new model for intuitionistic fuzzy multi-attributes decision making," European Journal of Operational Research, Elsevier, vol. 249(2), pages 677-682.
    9. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    10. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    11. Michailidou, Alexandra V. & Vlachokostas, Christos & Moussiopoulos, Νicolas, 2016. "Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas," Tourism Management, Elsevier, vol. 55(C), pages 1-12.
    12. Zhi Pei, 2017. "Multi-attribute decision making based on a novel IF point operator," Fuzzy Optimization and Decision Making, Springer, vol. 16(4), pages 505-524, December.
    13. Peide Liu & Hongyu Yang & Haiquan Wu & Meilong Ju & Fawaz E. Alsaadi, 2019. "Some Maclaurin Symmetric Mean Aggregation Operators Based on Cloud Model and Their Application to Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 981-1007, May.
    14. Junling Zhang & Xiaowen Qi & Changyong Liang, 2018. "Tackling Complexity in Green Contractor Selection for Mega Infrastructure Projects: A Hesitant Fuzzy Linguistic MADM Approach with considering Group Attitudinal Character and Attributes’ Interdependen," Complexity, Hindawi, vol. 2018, pages 1-31, December.
    15. Yanmin Liu & Hua Zhao & Zeshui Xu, 2018. "The chain and substitution rules of interval-valued intuitionistic fuzzy calculus," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 265-285, September.
    16. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    17. Yayi Yuan & Zeshui Xu & Yixin Zhang, 2022. "The DEMATEL–COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 137-156, March.
    18. Miin-Shen Yang & Zahid Hussain, 2018. "Fuzzy Entropy for Pythagorean Fuzzy Sets with Application to Multicriterion Decision Making," Complexity, Hindawi, vol. 2018, pages 1-14, November.
    19. Akshay Hinduja & Manju Pandey, 2019. "An Integrated Intuitionistic Fuzzy MCDM Approach to Select Cloud-Based ERP System for SMEs," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1875-1908, November.
    20. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1718-:d:163141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.