IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i7p1464-d157345.html
   My bibliography  Save this article

Role of Sediments in Insecticide Runoff from Urban Surfaces: Analysis and Modeling

Author

Listed:
  • Angela Gorgoglione

    (Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Fabián A. Bombardelli

    (Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Bruno J. L. Pitton

    (Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Lorence R. Oki

    (Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Darren L. Haver

    (Division of Agriculture and Natural Resources, South Coast Research & Extension Center, University of California, Irvine, 7601 Irvine Blvd., Irvine, CA 92618, USA)

  • Thomas M. Young

    (Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

Abstract

Insecticides, such as pyrethroids, have frequently been detected in runoff from urban areas, and their offsite transport can cause aquatic toxicity in urban streams and estuaries. To better understand the wash-off process of pesticide residues in urban runoff, the association of pyrethroids with sediment in runoff from residential surfaces was investigated in two watersheds located in Northern California (Sacramento County). Rainfall, flow rate, and event mean concentrations/loads of sediments and pyrethroids, collected during seasonal monitoring campaigns from 2007 to 2014, were analyzed to identify relationships among stormwater quality and rainfall characteristics, primarily using Principal Component Analysis (PCA). Pyrethroid wash-off was strongly related to sediment wash-off whenever sediment loads exceeded 10 mg; this value was conveniently selected as a threshold between dissolved and particle-bound control of off-site pyrethroid transport. A new mechanistic model for predicting pyrethroid wash-off profiles from residential surfaces at basin-scale was implemented in the Storm Water Management Model (SWMM). The accuracy of the model predictions was estimated by evaluating the root mean square error (RMSE), Nash–Sutcliff efficiency (NSE), and Kling–Gupta efficiency (KGE) for each pyrethroid detected (RMSE tot = 0.13; NSE tot = 0.28; KGE tot = 0.56). The importance of particle-bound transport revealed in this work confirms previous field investigations at a smaller scale, and it should be a key consideration when developing policies to mitigate pesticide runoff from urban areas.

Suggested Citation

  • Angela Gorgoglione & Fabián A. Bombardelli & Bruno J. L. Pitton & Lorence R. Oki & Darren L. Haver & Thomas M. Young, 2018. "Role of Sediments in Insecticide Runoff from Urban Surfaces: Analysis and Modeling," IJERPH, MDPI, vol. 15(7), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:7:p:1464-:d:157345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/7/1464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/7/1464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Di Modugno & Andrea Gioia & Angela Gorgoglione & Vito Iacobellis & Giovanni La Forgia & Alberto F. Piccinni & Ezio Ranieri, 2015. "Build-Up/Wash-Off Monitoring and Assessment for Sustainable Management of First Flush in an Urban Area," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    2. Marco Race & Alberto Ferraro & Massimiliano Fabbricino & Agostino La Marca & Antonio Panico & Danilo Spasiano & Alice Tognacchini & Francesco Pirozzi, 2018. "Ethylenediamine- N , N ′-Disuccinic Acid (EDDS)—Enhanced Flushing Optimization for Contaminated Agricultural Soil Remediation and Assessment of Prospective Cu and Zn Transport," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolin Huang & Han Chen & Fang Xia & Zhenfeng Wang & Kun Mei & Xu Shang & Yuanyuan Liu & Randy A. Dahlgren & Minghua Zhang & Hong Huang, 2018. "Assessment of Long-Term Watershed Management on Reservoir Phosphorus Concentrations and Export Fluxes," IJERPH, MDPI, vol. 15(10), pages 1-12, October.
    2. Cosimo Russo & Alberto Castro & Andrea Gioia & Vito Iacobellis & Angela Gorgoglione, 2023. "A Stormwater Management Framework for Predicting First Flush Intensity and Quantifying its Influential Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1437-1459, February.
    3. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li, 2018. "Studies on the Spatiotemporal Variability of River Water Quality and Its Relationships with Soil and Precipitation: A Case Study of the Mun River Basin in Thailand," IJERPH, MDPI, vol. 15(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cosimo Russo & Alberto Castro & Andrea Gioia & Vito Iacobellis & Angela Gorgoglione, 2023. "A Stormwater Management Framework for Predicting First Flush Intensity and Quantifying its Influential Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1437-1459, February.
    2. Angela Gorgoglione & Andrea Gioia & Vito Iacobellis, 2019. "A Framework for Assessing Modeling Performance and Effects of Rainfall-Catchment-Drainage Characteristics on Nutrient Urban Runoff in Poorly Gauged Watersheds," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    3. Juan T. García & Pablo Espín-Leal & Antonio Vigueras-Rodríguez & José M. Carrillo & Luis G. Castillo, 2018. "Synthetic Pollutograph by Prediction Indices: An Evaluation in Several Urban Sub-Catchments," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    4. Parviz Heidari & Antonio Panico, 2020. "Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
    5. Jinfeng Wang & Xiaoyong Bai & Fang Liu & Jian Zhang & Fei Chen & Qian Lu, 2019. "Enrichments of Cadmium and Arsenic and Their Effects on the Karst Forest Area," IJERPH, MDPI, vol. 16(23), pages 1-13, November.
    6. Ya Wang & Chengqiao Shi & Kang Lv & Youqing Li & Jinjin Cheng & Xiaolong Chen & Xianwen Fang & Xiangyang Yu, 2019. "Genotypic Variation in Nickel Accumulation and Translocation and Its Relationships with Silicon, Phosphorus, Iron, and Manganese among 72 Major Rice Cultivars from Jiangsu Province, China," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    7. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Yuanyuan Shen & Yu Ji & Chunrong Li & Pingping Luo & Wenke Wang & Yuan Zhang & Daniel Nover, 2018. "Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils," IJERPH, MDPI, vol. 15(10), pages 1-17, October.
    9. Angela Gorgoglione & Vincenzo Torretta, 2018. "Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    10. Angela Gorgoglione & Alberto Castro & Vito Iacobellis & Andrea Gioia, 2021. "A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff," Sustainability, MDPI, vol. 13(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:7:p:1464-:d:157345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.