IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i5p994-d146464.html
   My bibliography  Save this article

Seasonal Patterns in the Prevalence and Diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban Temperate Forest in South Western Slovakia

Author

Listed:
  • Michal Chvostáč

    (Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia)

  • Eva Špitalská

    (Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia)

  • Radovan Václav

    (Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia)

  • Tatiana Vaculová

    (Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia)

  • Lenka Minichová

    (Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia)

  • Markéta Derdáková

    (Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia)

Abstract

In Europe, Ixodes ricinus is the most important vector of tick-borne zoonotic bacteria. It transmits spirochaetes from the Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum and Rickettsia spp. Although spatial differences in the prevalence of tick-borne pathogens have been intensively studied, seasonal (within-year) fluctuations in the prevalence of these pathogens within sites are often overlooked. We analyzed the occurrence and seasonal dynamics of Ixodes ricinus in an urban forest in Bratislava, Slovakia. Furthemore, we examined temporal trends in the community structure of B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in questing and bird-feeding ticks. The total prevalence for B. burgdorferi s.l. in questing I. ricinus was 6.8%, involving six genospecies with the dominance of bird-associated B. garinii and B. valaisiana. A. phagocytophilum , R. helvetica and R. monacensis occurred in 5.9%, 5.0% and 0.2% of questing ticks, respectively. In total, 12.5% and 4.4% of bird-feeding I. ricinus ticks carried B. burgdorferi s.l. and R. helvetica . The total prevalence of B. burgdorferi s.l. in our study site was two times lower than the mean prevalence for Europe. In contrast, A. phagocytophilum prevalence was significantly higher compared to those in other habitats of Slovakia. Our results imply that tick propagation and the transmission, suppression and seasonal dynamics of tick-borne pathogens at the study site were primarily shaped by abundance and temporal population fluctuations in ruminant and bird hosts.

Suggested Citation

  • Michal Chvostáč & Eva Špitalská & Radovan Václav & Tatiana Vaculová & Lenka Minichová & Markéta Derdáková, 2018. "Seasonal Patterns in the Prevalence and Diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban Temperate Forest in South Western Slovakia," IJERPH, MDPI, vol. 15(5), pages 1-19, May.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:994-:d:146464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/5/994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/5/994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felicia Keesing & Lisa K. Belden & Peter Daszak & Andrew Dobson & C. Drew Harvell & Robert D. Holt & Peter Hudson & Anna Jolles & Kate E. Jones & Charles E. Mitchell & Samuel S. Myers & Tiffany Bogich, 2010. "Impacts of biodiversity on the emergence and transmission of infectious diseases," Nature, Nature, vol. 468(7324), pages 647-652, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    2. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    4. Mathieu Pruvot & Manigandan Lejeune & Susan Kutz & Wendy Hutchins & Marco Musiani & Alessandro Massolo & Karin Orsel, 2016. "Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling on Fascioloides magna Infection in Elk," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    5. Woldehanna, Sara & Zimicki, Susan, 2015. "An expanded One Health model: Integrating social science and One Health to inform study of the human-animal interface," Social Science & Medicine, Elsevier, vol. 129(C), pages 87-95.
    6. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    7. Haozhe Zhang & Jinyi Li, 2024. "Mapping the urban and rural planning response paths to pandemics of infectious diseases," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    8. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Magdalena Meyer & Dominik W. Melville & Heather J. Baldwin & Kerstin Wilhelm & Evans Ewald Nkrumah & Ebenezer K. Badu & Samuel Kingsley Oppong & Nina Schwensow & Adam Stow & Peter Vallo & Victor M. Co, 2024. "Bat species assemblage predicts coronavirus prevalence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Marcela Mulholland, 2020. "A Moment of Intersecting Crises: Climate Justice in the Era of Coronavirus," Development, Palgrave Macmillan;Society for International Deveopment, vol. 63(2), pages 257-261, December.
    11. Clara Vasconcelos & Nir Orion, 2021. "Earth Science Education as a Key Component of Education for Sustainability," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    12. Mariana Brüning-González & Paula Villagra & Horacio Samaniego, 2023. "Biodiversity and Resilience to Tsunamis in Chilean Urban Areas: The Role of Ecoinformatics," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    13. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    14. Marc Bonis, 2020. "Physical Activity May be a Major Deterrent of Severe Health Consequences from COVID-19: An Annotated Summary of Physical Activity and COVID-19 Research," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 29(1), pages 22063-22069, July.
    15. Shahzad Ahmad & Zhang Caihong & E. M. B. P. Ekanayake, 2021. "Livelihood Improvement through Agroforestry Compared to Conventional Farming System: Evidence from Northern Irrigated Plain, Pakistan," Land, MDPI, vol. 10(6), pages 1-18, June.
    16. Reaser, Jamie & Hund, Brookline E. & Ruiz-Aravena, Manuel & Tabor, Gary M. & Patz, Jonathan A. & Becker, Daniel & Locke, Harvey & Hudson, Peter & Plowright, Raina, 2020. "Reducing land use-induced spillover risk by fostering landscape immunity: policy priorities for conservation practitioners," EcoEvoRxiv 7gd6a, Center for Open Science.
    17. David Caldevilla-Domínguez & Almudena Barrientos-Báez & Graciela Padilla-Castillo, 2021. "Twitter as a Tool for Citizen Education and Sustainable Cities after COVID-19," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    18. Serge Morand & Sathaporn Jittapalapong & Yupin Suputtamongkol & Mohd Tajuddin Abdullah & Tan Boon Huan, 2014. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    19. Wang, Hsiao-Hsuan & Grant, W.E. & Teel, P.D. & Hamer, S.A., 2016. "Tick-borne infectious agents in nature: Simulated effects of changes in host density on spatial-temporal prevalence of infected ticks," Ecological Modelling, Elsevier, vol. 323(C), pages 77-86.
    20. Kristie L. Ebi & Frances Harris & Giles B. Sioen & Chadia Wannous & Assaf Anyamba & Peng Bi & Melanie Boeckmann & Kathryn Bowen & Guéladio Cissé & Purnamita Dasgupta & Gabriel O. Dida & Alexandros Gas, 2020. "Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development," IJERPH, MDPI, vol. 17(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:994-:d:146464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.