IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i4p727-d140633.html
   My bibliography  Save this article

Assessing Residential Exposure Risk from Spills of Flowback Water from Marcellus Shale Hydraulic Fracturing Activity

Author

Listed:
  • Noura Abualfaraj

    (CAEE Department, College of Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA)

  • Patrick L. Gurian

    (CAEE Department, College of Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA)

  • Mira S. Olson

    (CAEE Department, College of Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA)

Abstract

Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10 −6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10 −6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10 −6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts.

Suggested Citation

  • Noura Abualfaraj & Patrick L. Gurian & Mira S. Olson, 2018. "Assessing Residential Exposure Risk from Spills of Flowback Water from Marcellus Shale Hydraulic Fracturing Activity," IJERPH, MDPI, vol. 15(4), pages 1-25, April.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:727-:d:140633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/4/727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/4/727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abualfaraj, Noura & Olson, Mira S. & Gurian, Patrick L. & De Roos, Anneclaire & Gross-Davis, Carol Ann, 2016. "Statistical analysis of compliance violations for natural gas wells in Pennsylvania," Energy Policy, Elsevier, vol. 97(C), pages 421-428.
    2. Daniel J. Rozell & Sheldon J. Reaven, 2012. "Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1382-1393, August.
    3. Noura Abualfaraj & Patrick L. Gurian & Mira S. Olson, 2018. "Frequency Analysis of Failure Scenarios from Shale Gas Development," IJERPH, MDPI, vol. 15(5), pages 1-13, April.
    4. Rahm, Brian G. & Vedachalam, Sridhar & Bertoia, Lara R. & Mehta, Dhaval & Vanka, Veeravenkata Sandeep & Riha, Susan J., 2015. "Shale gas operator violations in the Marcellus and what they tell us about water resource risks," Energy Policy, Elsevier, vol. 82(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noura Abualfaraj & Patrick L. Gurian & Mira S. Olson, 2018. "Frequency Analysis of Failure Scenarios from Shale Gas Development," IJERPH, MDPI, vol. 15(5), pages 1-13, April.
    2. Cronshaw, Ian & Grafton, R. Quentin, 2016. "Economic benefits, external costs and the regulation of unconventional gas in the United States," Energy Policy, Elsevier, vol. 98(C), pages 180-186.
    3. Cong Dong & Xiucheng Dong & Joel Gehman & Lianne Lefsrud, 2017. "Using BP Neural Networks to Prioritize Risk Management Approaches for China’s Unconventional Shale Gas Industry," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
    4. Shannon English & Joonghyeok Heo & Jaewoong Won, 2020. "Investigation of Sinkhole Formation with Human Influence: A Case Study from Wink Sink in Winkler County, Texas," Sustainability, MDPI, vol. 12(9), pages 1-13, April.
    5. Vidya Mani & Suresh Muthulingam, 2019. "Does Learning from Inspections Affect Environmental Performance? Evidence from Unconventional Well Development in Pennsylvania," Service Science, INFORMS, vol. 21(1), pages 177-197, January.
    6. Klaudia Wilk, 2019. "Experimental and Simulation Studies of Energized Fracturing Fluid Efficiency in Tight Gas Formations," Energies, MDPI, vol. 12(23), pages 1-17, November.
    7. Zuo, Na & Schieffer, Jack & Buck, Steven, 2019. "The effect of the oil and gas boom on schooling decisions in the U.S," Resource and Energy Economics, Elsevier, vol. 55(C), pages 1-23.
    8. Kuwayama, Yusuke & Roeshot, Skyler & Krupnick, Alan & Richardson, Nathan & Mares, Jan, 2017. "Risks and mitigation options for on-site storage of wastewater from shale gas and tight oil development," Energy Policy, Elsevier, vol. 101(C), pages 582-593.
    9. Yulong Yang & Han Liu & Weixuan Mao & Zhaojie Song & Haizhu Wang, 2020. "Study on the Impact Pressure of Swirling-Round Supercritical CO 2 Jet Flow and Its Influencing Factors," Energies, MDPI, vol. 14(1), pages 1-15, December.
    10. Max Harleman & Pramod Manohar & Elaine L. Hill, 2022. "Negotiations of Oil and Gas Auxiliary Lease Clauses: Evidence from Pennsylvania’s Marcellus Shale," NBER Working Papers 30806, National Bureau of Economic Research, Inc.
    11. Ilia Murtazashvili & Ennio E. Piano, 2019. "Governance of shale gas development: Insights from the Bloomington school of institutional analysis," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 32(2), pages 159-179, June.
    12. Lenhard, L.G. & Andersen, S.M. & Coimbra-Araújo, C.H., 2018. "Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 56-69.
    13. Karen Maguire & John V. Winters, 2017. "Energy Boom and Gloom? Local Effects of Oil and Natural Gas Drilling on Subjective Well†Being," Growth and Change, Wiley Blackwell, vol. 48(4), pages 590-610, December.
    14. Malin, Stephanie A. & Mayer, Adam & Crooks, James L. & McKenzie, Lisa & Peel, Jennifer L. & Adgate, John L., 2019. "Putting on partisan glasses: Political identity, quality of life, and oil and gas production in Colorado," Energy Policy, Elsevier, vol. 129(C), pages 738-748.
    15. Abualfaraj, Noura & Olson, Mira S. & Gurian, Patrick L. & De Roos, Anneclaire & Gross-Davis, Carol Ann, 2016. "Statistical analysis of compliance violations for natural gas wells in Pennsylvania," Energy Policy, Elsevier, vol. 97(C), pages 421-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:727-:d:140633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.