IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2883-d190920.html
   My bibliography  Save this article

The Development Path of the Lighting Industry in Mainland China: Execution of Energy Conservation and Management on Mercury Emission

Author

Listed:
  • Zhongguo Li

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)

  • Puqi Jia

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)

  • Fu Zhao

    (School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
    Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA)

  • Yikun Kang

    (Engineering Laboratory for Municipal Waste Pollution Control Technology and Equipment Research, Lanzhou 730000, China)

Abstract

The development path of the lighting industry in mainland China was studied in this work. Lighting electricity accounts for about 12% of social electricity consumption in mainland China, while only approximately 15% of electricity is conversed into light when incandescent light bulbs are used. To reduce electrical energy consumption and mercury emission from coal burning in the lighting industry, China worked out a roadmap to replace incandescent light bulbs with energy-saving fluorescent lamps (FLs). However, FL products utilize mercury to give out light and release mercury in their production, consumption and disposal processes. Therefore, the challenges of the lighting industry that mainland China are facing are controlling mercury pollution through the environmentally-friendly producing of fluorescent lamps, effective collecting and treating of spent fluorescent lamps. It was proposed that to effectively reduce energy consumption and mercury pollution, a good way to do this is developing energy-saving and mercury-free light emitting diode lighting industry. The mainland China Government’s strategies to develop lighting industry are worthy of consideration and emulation by other countries.

Suggested Citation

  • Zhongguo Li & Puqi Jia & Fu Zhao & Yikun Kang, 2018. "The Development Path of the Lighting Industry in Mainland China: Execution of Energy Conservation and Management on Mercury Emission," IJERPH, MDPI, vol. 15(12), pages 1-11, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2883-:d:190920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
    2. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    3. Chen, G.Q. & Li, J.S. & Chen, B. & Wen, C. & Yang, Q. & Alsaedi, A. & Hayat, T., 2016. "An overview of mercury emissions by global fuel combustion: The impact of international trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 345-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    2. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    3. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    4. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    5. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    6. Gulshan Maqbool & Zulqarnain Haider, 2021. "The Impact of Individual Behavior on Household Energy Saving," Journal of Economic Impact, Science Impact Publishers, vol. 3(1), pages 39-46.
    7. Cabeza, Luisa F. & Ürge-Vorsatz, Diana & Palacios, Anabel & Ürge, Daniel & Serrano, Susana & Barreneche, Camila, 2018. "Trends in penetration and ownership of household appliances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4044-4059.
    8. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    9. Wadud, Zia, 2015. "Decomposing the drivers of aviation fuel demand using simultaneous equation models," Energy, Elsevier, vol. 83(C), pages 551-559.
    10. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    11. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    12. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    13. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    14. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    15. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    16. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    17. Li, Mengna & Pan, Xiongfeng & Yuan, Sai, 2022. "Do the national industrial relocation demonstration zones have higher regional energy efficiency?," Applied Energy, Elsevier, vol. 306(PA).
    18. Zhou, Hui & Bukenya, James O., 2016. "Information inefficiency and willingness-to-pay for energy-efficient technology: A stated preference approach for China Energy Label," Energy Policy, Elsevier, vol. 91(C), pages 12-21.
    19. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    20. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2883-:d:190920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.