IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i11p2453-d180415.html
   My bibliography  Save this article

How Can Cities Adapt to a Multi-Disaster Environment? Empirical Research in Guangzhou (China)

Author

Listed:
  • Yijun Shi

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

  • Guofang Zhai

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

  • Shutian Zhou

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

  • Yuwen Lu

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

  • Wei Chen

    (School of Geography and Ocean Sciences, Nanjing University, Nanjing 210093, China)

  • Hongbo Liu

    (China Academy of Urban Planning and Design, Beijing 100044, China)

Abstract

Urban disaster risk assessment is the most basic and important part of urban safety development. Conducting disaster prevention and mitigation on the basis of urban disaster risk assessment requires an understanding of the relationship between the city and the natural environment. This enhances the city’s ability to withstand various types of disasters and achieves the development of a safe city. Based on a review of the existing literature, we propose a fuzzy comprehensive evaluation method for urban multi-disaster risk assessment. The multi-disaster risk assessment method includes the identification and screening of urban disasters, the assessment of individual disaster risk, and integrated urban disaster risks, the division of urban comprehensive disaster risks into several risk levels, and the determination of coping strategies. Taking Guangzhou (China) as an example, we determined the major disaster risks faced by Guangzhou, assessed the risks of individual disasters, and finally obtained the results of the comprehensive disaster risk of Guangzhou. Second, we analyzed the relationship between the disaster risk assessment and urban safety development, and proposed countermeasures and recommendations for the development of different disaster risk levels.

Suggested Citation

  • Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Hongbo Liu, 2018. "How Can Cities Adapt to a Multi-Disaster Environment? Empirical Research in Guangzhou (China)," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2453-:d:180415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/11/2453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/11/2453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Chen & Guofang Zhai & Chongqiang Ren & Yijun Shi & Jianxin Zhang, 2018. "Urban Resources Selection and Allocation for Emergency Shelters: In a Multi-Hazard Environment," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
    2. Stefan Greiving & Mark Fleischhauer & Johannes Luckenkotter, 2006. "A Methodology for an integrated risk assessment of spatially relevant hazards," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(1), pages 1-19.
    3. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    4. G. Grünthal & A. Thieken & J. Schwarz & K. Radtke & A. Smolka & B. Merz, 2006. "Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 21-44, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Hu & Bangxin Chen & Jing Na & Jianqun Yao & Zhimin Zhang & Xiangfeng Du, 2022. "Urban Surface Deformation Management: Assessing Dangerous Subsidence Areas through Regional Surface Deformation, Natural Factors, and Human Activities," Sustainability, MDPI, vol. 14(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.
    2. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    3. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    4. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    5. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    6. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    7. Mohammad Ridwan Lessy & Jonatan Lassa & Kerstin K. Zander, 2024. "Understanding Multi-Hazard Interactions and Impacts on Small-Island Communities: Insights from the Active Volcano Island of Ternate, Indonesia," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    8. Baoyin Liu & Yim Ling Siu & Gordon Mitchell & Wei Xu, 2016. "The danger of mapping risk from multiple natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 139-153, May.
    9. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    10. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    11. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    12. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    13. Siqi Tang & Jianguo Wang & Yuanhao Xu & Shengbo Chen & Jiawang Zhang & Wutao Zhao & Guojian Wang, 2023. "Evaluation of Emergency Shelter Service Functions and Optimisation Suggestions—Case Study in the Songyuan City Central Area," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    14. Aubin VIGNOBOUL, 2022. "The winds of inequalities: How hurricanes impact inequalities at the macro level?," LEO Working Papers / DR LEO 2986, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    15. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    16. Tsegaye Tadesse & Menghestab Haile & Gabriel Senay & Brian D. Wardlow & Cody L. Knutson, 2008. "The need for integration of drought monitoring tools for proactive food security management in sub‐Saharan Africa," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 265-279, November.
    17. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    18. Fatma Yerlikaya-Özkurt & Aysegul Askan, 2020. "Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3163-3180, September.
    19. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    20. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2453-:d:180415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.