IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i8p840-d105990.html
   My bibliography  Save this article

Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan’an City, China

Author

Listed:
  • Xinping Zhang

    (College of Forestry, Northwest A&F University, Yangling 712100, China
    Tourism Department, Shaanxi Vocational & Technical College, Xi’an 710100, China)

  • Dexiang Wang

    (College of Forestry, Northwest A&F University, Yangling 712100, China)

  • Hongke Hao

    (College of Forestry, Northwest A&F University, Yangling 712100, China)

  • Fangfang Zhang

    (Gaoling Branch School, Shaanxi Agricultural Broadcasting and Television School, Xi’an 710200, China)

  • Youning Hu

    (College of Forestry, Northwest A&F University, Yangling 712100, China
    School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China)

Abstract

In this study Yan’an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990–2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990–2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon’s diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment.

Suggested Citation

  • Xinping Zhang & Dexiang Wang & Hongke Hao & Fangfang Zhang & Youning Hu, 2017. "Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan’an City, China," IJERPH, MDPI, vol. 14(8), pages 1-25, July.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:8:p:840-:d:105990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/8/840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/8/840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, B. & Chen, G.Q. & Yang, Z.F. & Jiang, M.M., 2007. "Ecological footprint accounting for energy and resource in China," Energy Policy, Elsevier, vol. 35(3), pages 1599-1609, March.
    2. Peiyue Li & Hui Qian & Jianhua Wu, 2014. "Environment: Accelerate research on land creation," Nature, Nature, vol. 510(7503), pages 29-31, June.
    3. Cohen, Barney, 2004. "Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts," World Development, Elsevier, vol. 32(1), pages 23-51, January.
    4. Qunfang Huang & Yuqi Lu, 2015. "The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China," IJERPH, MDPI, vol. 12(8), pages 1-17, July.
    5. Man Sing Wong & Fen Peng & Bin Zou & Wen Zhong Shi & Gaines J. Wilson, 2016. "Spatially Analyzing the Inequity of the Hong Kong Urban Heat Island by Socio-Demographic Characteristics," IJERPH, MDPI, vol. 13(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    2. Maurício Lamano Ferreira & Claudia Terezinha Kniess & Wanderley Meira Silva & Anderson Targino da Silva Ferreira, 2023. "Urban Forests, Territorial Planning and Political Stability: Key Factors to Face Climate Change in a Megacity," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    3. Muhammad Amir Siddique & Fan Boqing & Liu Dongyun, 2023. "Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020)," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    4. Nadeem Ullah & Muhammad Amir Siddique & Mengyue Ding & Sara Grigoryan & Irshad Ahmad Khan & Zhihao Kang & Shangen Tsou & Tianlin Zhang & Yike Hu & Yazhuo Zhang, 2023. "The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China," IJERPH, MDPI, vol. 20(3), pages 1-15, February.
    5. Vimala Kiranmai Ayyala Somayajula & Deepika Ghai & Sandeep Kumar & Suman Lata Tripathi & Chaman Verma & Calin Ovidiu Safirescu & Traian Candin Mihaltan, 2022. "Classification and Validation of Spatio-Temporal Changes in Land Use/Land Cover and Land Surface Temperature of Multitemporal Images," Sustainability, MDPI, vol. 14(23), pages 1-35, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    2. Ulep, Valerie Gilbert T. & Ortiz, Danica Aisa P. & Go, John Juliard & Duante, Charmaine & Gonzales, Rosa C. & Mendoza, Laurita R. & Reyes, Clarissa & Elgo, Frances Rose & Aldeon, Melanie P., 2012. "Inequities in Noncommunicable Diseases," Discussion Papers DP 2012-04, Philippine Institute for Development Studies.
    3. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    4. Suranjan Sinha & Surajit Chakraborty & Shatrajit Goswami, 2017. "Ecological footprint: an indicator of environmental sustainability of a surface coal mine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 807-824, June.
    5. Sean Fox & Robin Bloch & Jose Monroy, 2018. "Understanding the dynamics of Nigeria’s urban transition: A refutation of the ‘stalled urbanisation’ hypothesis," Urban Studies, Urban Studies Journal Limited, vol. 55(5), pages 947-964, April.
    6. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    7. Gurgel, Angelo Costa, 2007. "Trade Agreements and their Impacts on the Familiar Agriculture in Brazil," Conference papers 331587, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
    9. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    10. Willem Paling, 2012. "Planning a Future for Phnom Penh: Mega Projects, Aid Dependence and Disjointed Governance," Urban Studies, Urban Studies Journal Limited, vol. 49(13), pages 2889-2912, October.
    11. Michail Fragkias & Karen C Seto, 2007. "Modeling Urban Growth in Data-Sparse Environments: A New Approach," Environment and Planning B, , vol. 34(5), pages 858-883, October.
    12. Carmen Lizarraga & Ciro Jaramillo & Alejandro L. Grindlay, 2011. "Urban development and transport disadvantage: Methodology to evaluate social transport needs in Latin American cities," ERSA conference papers ersa11p936, European Regional Science Association.
    13. Jianhua Wu & Ningning Yang & Peiyue Li & Chunliu Yang, 2023. "Influence of Moisture Content and Dry Density on the Compressibility of Disturbed Loess: A Case Study in Yan’an City, China," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    14. Weibin Lin & Jin Yang & Bin Chen, 2011. "Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index," Energies, MDPI, vol. 4(9), pages 1-15, September.
    15. Chen, Shaohua & Ravallion, Martin, 2007. "Absolute poverty measures for the developing world, 1981-2004," Policy Research Working Paper Series 4211, The World Bank.
    16. Sara T Borgström, 2009. "Patterns and Challenges of Urban Nature Conservation—A Study of Southern Sweden," Environment and Planning A, , vol. 41(11), pages 2671-2685, November.
    17. Fox, Sean & Wolf, Levi John, 2022. "What makes a place urban?," SocArXiv qfvry, Center for Open Science.
    18. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    19. Lin Li & Tong Liu & Subo Xu & Zhiwei Tian, 2021. "Evaluation on sustainable development of forest tourism in Heilongjiang Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13382-13402, September.
    20. Quddus Tushar & Guomin Zhang & Satheeskumar Navaratnam & Muhammed A. Bhuiyan & Lei Hou & Filippo Giustozzi, 2023. "A Review of Evaluative Measures of Carbon-Neutral Buildings: The Bibliometric and Science Mapping Analysis towards Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:8:p:840-:d:105990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.