IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i10p1094-d112672.html
   My bibliography  Save this article

Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review

Author

Listed:
  • Nuhu Dalhat Mu’azu

    (Environmental Engineering Department, University of Dammam, Dammam 31451, Saudi Arabia)

  • Nabeel Jarrah

    (Environmental Engineering Department, University of Dammam, Dammam 31451, Saudi Arabia
    Chemical Engineering Department, Mutah University, Karak 61710, Jordan)

  • Mukarram Zubair

    (Environmental Engineering Department, University of Dammam, Dammam 31451, Saudi Arabia)

  • Omar Alagha

    (Environmental Engineering Department, University of Dammam, Dammam 31451, Saudi Arabia)

Abstract

Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment.

Suggested Citation

  • Nuhu Dalhat Mu’azu & Nabeel Jarrah & Mukarram Zubair & Omar Alagha, 2017. "Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review," IJERPH, MDPI, vol. 14(10), pages 1-34, September.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:10:p:1094-:d:112672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/10/1094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/10/1094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianqin Zhao & Sheng-Tao Yang & Shicheng Feng & Qiang Ma & Xiaoling Peng & Deyi Wu, 2017. "Preparation and Application of Carboxylated Graphene Oxide Sponge in Dye Removal," IJERPH, MDPI, vol. 14(11), pages 1-13, October.
    2. Omar Alagha & Ahmed Allazem & Alaadin A. Bukhari & Ismail Anil & Nuhu Dalhat Mu'azu, 2020. "Suitability of SBR for Wastewater Treatment and Reuse: Pilot-Scale Reactor Operated in Different Anoxic Conditions," IJERPH, MDPI, vol. 17(5), pages 1-13, March.
    3. Katarzyna Wystalska & Anna Grosser, 2024. "Sewage Sludge-Derived Biochar and Its Potential for Removal of Ammonium Nitrogen and Phosphorus from Filtrate Generated during Dewatering of Digested Sludge," Energies, MDPI, vol. 17(6), pages 1-19, March.
    4. Li Liu & Shisuo Fan & Yang Li, 2018. "Removal Behavior of Methylene Blue from Aqueous Solution by Tea Waste: Kinetics, Isotherms and Mechanism," IJERPH, MDPI, vol. 15(7), pages 1-16, June.
    5. Asmat Ali & Maria Siddique & Wei Chen & Zhixin Han & Romana Khan & Muhammad Bilal & Ummara Waheed & Irum Shahzadi, 2022. "Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution," IJERPH, MDPI, vol. 19(11), pages 1-15, May.
    6. Zongliang Zuo & Tian Jing & Jinmeng Wang & Xinjiang Dong & Yishan Chen & Siyi Luo & Weiwei Zhang, 2022. "Sludge Gasification Using Iron Bearing Metallurgical Slag as Heat Carrier: Characteristics and Kinetics," Energies, MDPI, vol. 15(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    3. Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    4. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    5. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    6. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    7. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    8. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    9. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    10. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    11. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    12. Vito Horvatić & Helena Bakić Begić & Davor Romić & Marko Černe & Smiljana Goreta Ban & Monika Zovko & Marija Romić, 2021. "Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region," Land, MDPI, vol. 10(10), pages 1-22, October.
    13. Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
    14. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    15. Gadsbøll, Rasmus Østergaard & Clausen, Lasse Røngaard & Thomsen, Tobias Pape & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2019. "Flexible TwoStage biomass gasifier designs for polygeneration operation," Energy, Elsevier, vol. 166(C), pages 939-950.
    16. Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2020. "Oil refinery sludge and renewable fuel blends as energy sources for the cement industry," Renewable Energy, Elsevier, vol. 157(C), pages 55-70.
    17. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    18. Kuo-Hsiung Lin & Jiun-Horng Tsai & Zhi-Wei Chou & Hung-Lung Chiang, 2021. "Product Characteristics of Sludge Pyrolysis and Adsorption Performance of Metals by Char," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
    19. L. V. Cremades & C. Soriano & J. A. Cusidó, 2018. "Tackling environmental issues in industrial ceramic sintering of sewage sludge: odors and gas emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1651-1663, August.
    20. Anna Turek & Kinga Wieczorek & Wojciech M. Wolf, 2019. "Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem," Sustainability, MDPI, vol. 11(6), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:10:p:1094-:d:112672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.