IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i4p4101-4115d48092.html
   My bibliography  Save this article

Occupational Exposure of Diesel Station Workers to BTEX Compounds at a Bus Depot

Author

Listed:
  • Raeesa Moolla

    (School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag X3 WITS, Gauteng 2050, South Africa)

  • Christopher J. Curtis

    (School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag X3 WITS, Gauteng 2050, South Africa)

  • Jasper Knight

    (School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag X3 WITS, Gauteng 2050, South Africa)

Abstract

Diesel fuel is known to emit pollutants that have a negative impact on environmental and human health. In developing countries like South Africa, attendants are employed to pump fuel for customers at service stations. Attendants refuel vehicles with various octane unleaded fuel, lead-replacement petrol and diesel fuel, on a daily basis. Attendants are at risk to adverse health effects associated with the inhalation of volatile organic compounds released from these fuels. The pollutants released include benzene, toluene, ethylbenzene and xylenes (BTEX), which are significant due to their high level of toxicity. In this study, a risk assessment of BTEX was conducted at a diesel service station for public buses. Using Radiello passive samplers, it was found that benzene concentrations were above recommended international standards. Due to poor ventilation and high exposure duration, the average benzene concentration over the sampling campaign exceeded the US Environmental Protection Agency’s chronic inhalation exposure reference concentration. Lifetime cancer risk estimation showed that on average there is a 3.78 × 10 −4 cancer risk, corresponding to an average chronic daily intake of 1.38 × 10 −3 mg/kg/day of benzene exposure. Additionally, there were incidences where individuals were at potential hazard risk of benzene and toluene that may pose non-carcinogenic effects to employees.

Suggested Citation

  • Raeesa Moolla & Christopher J. Curtis & Jasper Knight, 2015. "Occupational Exposure of Diesel Station Workers to BTEX Compounds at a Bus Depot," IJERPH, MDPI, vol. 12(4), pages 1-15, April.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:4:p:4101-4115:d:48092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/4/4101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/4/4101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lihui Huang & Jinhan Mo & Jan Sundell & Zhihua Fan & Yinping Zhang, 2013. "Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-8, November.
    2. Benjamin Edokpolo & Qiming Jimmy Yu & Des Connell, 2014. "Health Risk Assessment of Ambient Air Concentrations of Benzene, Toluene and Xylene (BTX) in Service Station Environments," IJERPH, MDPI, vol. 11(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunisa Chaiklieng & Pornnapa Suggaravetsiri & Herman Autrup, 2019. "Risk Assessment on Benzene Exposure among Gasoline Station Workers," IJERPH, MDPI, vol. 16(14), pages 1-9, July.
    2. Muhammad Mohsin & Hengbin Yin & Weilun Huang & Shijun Zhang & Luyao Zhang & Ana Mehak, 2022. "Evaluation of Occupational Health Risk Management and Performance in China: A Case Study of Gas Station Workers," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    3. Chin-Yu Hsu & Yu-Ting Zeng & Yu-Cheng Chen & Mu-Jean Chen & Shih-Chun Candice Lung & Chih-Da Wu, 2020. "Kriging-Based Land-Use Regression Models That Use Machine Learning Algorithms to Estimate the Monthly BTEX Concentration," IJERPH, MDPI, vol. 17(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunisa Chaiklieng & Pornnapa Suggaravetsiri & Herman Autrup, 2019. "Risk Assessment on Benzene Exposure among Gasoline Station Workers," IJERPH, MDPI, vol. 16(14), pages 1-9, July.
    2. Xiyao Chen & Fei Li & Chaoyang Liu & Jun Yang & Jingdong Zhang & Chunlin Peng, 2017. "Monitoring, Human Health Risk Assessment and Optimized Management for Typical Pollutants in Indoor Air from Random Families of University Staff, Wuhan City, China," Sustainability, MDPI, vol. 9(7), pages 1-13, June.
    3. Masilu Daniel Masekameni & Raeesa Moolla & Mary Gulumian & Derk Brouwer, 2018. "Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment," IJERPH, MDPI, vol. 16(1), pages 1-18, December.
    4. Benjamin Edokpolo & Qiming Jimmy Yu & Des Connell, 2015. "Health Risk Assessment for Exposure to Benzene in Petroleum Refinery Environments," IJERPH, MDPI, vol. 12(1), pages 1-16, January.
    5. Kristal Pech & Norma Pérez-Herrera & Ángel Antonio Vértiz-Hernández & Martín Lajous & Paulina Farías, 2023. "Health Risk Assessment in Children Occupationally and Para-Occupationally Exposed to Benzene Using a Reverse-Translation PBPK Model," IJERPH, MDPI, vol. 20(3), pages 1-11, January.
    6. Daniel Alvarez-Vaca & Radu Corneliu Duca & Alicia Borras-Santos & Emilie Hardy & Matteo Creta & Carole Eicher & Laurence Wurth & Anne Vergison & An Van Nieuwenhuyse, 2022. "Surveillance of Indoor Air Concentration of Volatile Organic Compounds in Luxembourgish Households," IJERPH, MDPI, vol. 19(9), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:4:p:4101-4115:d:48092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.