IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i10p13321-13349d57647.html
   My bibliography  Save this article

On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

Author

Listed:
  • Tanja Wolf

    (Department of Geography, King’s College London, London WC2R 2LS, UK)

  • Wen-Ching Chuang

    (School of Sustainability, Arizona State University, Tempe, AZ 85281, USA)

  • Glenn McGregor

    (Department of Geography, Durham University, Durham DH1 3LE, UK)

Abstract

Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

Suggested Citation

  • Tanja Wolf & Wen-Ching Chuang & Glenn McGregor, 2015. "On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?," IJERPH, MDPI, vol. 12(10), pages 1-29, October.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:13321-13349:d:57647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/10/13321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/10/13321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luc Anselin, 2012. "From SpaceStat to CyberGIS," International Regional Science Review, , vol. 35(2), pages 131-157, April.
    2. Smoyer, Karen E., 1998. "Putting risk in its place: methodological considerations for investigating extreme event health risk," Social Science & Medicine, Elsevier, vol. 47(11), pages 1809-1824, December.
    3. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    4. Sven Fuchs & Jörn Birkmann & Thomas Glade, 2012. "Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 1969-1975, December.
    5. S. J. Lindley & J. F. Handley & N. Theuray & E. Peet & D. Mcevoy, 2006. "Adaptation Strategies for Climate Change in the Urban Environment: Assessing Climate Change Related Risk in UK Urban Areas," Journal of Risk Research, Taylor & Francis Journals, vol. 9(5), pages 543-568, July.
    6. David Hondula & Robert Davis, 2014. "The predictability of high-risk zones for heat-related mortality in seven US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 771-788, November.
    7. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    8. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Navi & Alana Hansen & Monika Nitschke & Scott Hanson-Easey & Dino Pisaniello, 2017. "Developing Health-Related Indicators of Climate Change: Australian Stakeholder Perspectives," IJERPH, MDPI, vol. 14(5), pages 1-14, May.
    2. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    3. Somenath Halder, 2022. "A survival vulnerability index (SuVI) for an outlawed vocation: empirical evidence from snake charmer community, West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12131-12161, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    2. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    3. Fangtian Liu & Erqi Xu & Hongqi Zhang, 2024. "Assessing typhoon disaster mitigation capacity and its uncertainty analysis in Hainan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9401-9420, September.
    4. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    5. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    6. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    7. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    8. Nikole Guerrero & Marta Contreras & Alondra Chamorro & Carolina Martínez & Tomás Echaveguren, 2023. "Social vulnerability in Chile: challenges for multi-scale analysis and disaster risk reduction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3067-3102, July.
    9. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
    10. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    11. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    12. Jundong Hou & Jun Lv & Xin Chen & Shiwei Yu, 2016. "China’s regional social vulnerability to geological disasters: evaluation and spatial characteristics analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 97-111, November.
    13. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    14. Sarah L. Jackson & Sahar Derakhshan & Leah Blackwood & Logan Lee & Qian Huang & Margot Habets & Susan L. Cutter, 2021. "Spatial Disparities of COVID-19 Cases and Fatalities in United States Counties," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    15. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    16. Francisco Valderrey & Lina Carreño & Simone Lucatello & Emanuele Giorgi, 2023. "Multidisciplinary Evaluation of Vulnerabilities: Communities in Northern Mexico," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    17. Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    18. Khaksar, Seyed Mohammad Sadegh & Khosla, Rajiv & Chu, Mei Tai & Shahmehr, Fatemeh S., 2016. "Service Innovation Using Social Robot to Reduce Social Vulnerability among Older People in Residential Care Facilities," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 438-453.
    19. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    20. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:13321-13349:d:57647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.