IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v1y2021i3p10-177d644965.html
   My bibliography  Save this article

Spatiotemporal Land-Use Changes of Batticaloa Municipal Council in Sri Lanka from 1990 to 2030 Using Land Change Modeler

Author

Listed:
  • Ibra Lebbe Mohamed Zahir

    (Department of Geography, South Eastern University of Sri Lanka, University Park, Oluvil 32360, Sri Lanka)

  • Sunethra Thennakoon

    (Department of Geography, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka)

  • Rev. Pinnawala Sangasumana

    (Department of Geography, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka)

  • Jayani Herath

    (Department of Geography, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka)

  • Buddhika Madurapperuma

    (Department of Forestry and Wildland Resources, Humboldt State University, 1st Harpst Street, Arcata, CA 95521, USA)

  • Atham Lebbe Iyoob

    (Land Use Policy Planning Department, District Secretariat, Ampara 32000, Sri Lanka)

Abstract

Land-use change is a predictable and principal driving force of potential environmental changes on all spatial and temporal scales. A land-use change model is a tool that supports the analysis of the sources and consequences of land-use dynamics. This study aims to assess the spatiotemporal land-use changes that occurred during 1990–2020 in the municipal council limits of Batticaloa. A land change modeler has been used as an innovative land planning and decision support system in this study. The main satellite data were retrieved from Landsat in 1990, 2000, 2010, and 2020. For classification, the supervised classification method was employed, particularly with the medium resolution satellite images. Land-use classes were analyzed by the machine learning algorithm in theland change modeler. The Markov chain method was also used to predict future land-use changes. The results of the study reveal that only one land-use type, homestead, has gradually increased, from 12.1% to 34.1%, during the above-mentioned period. Agriculture land use substantially declined from 26.9% to 21.9%. Bare lands decreased from 11.5% to 5.0%, and wetlands declined from 13.9% to 9.6%.

Suggested Citation

  • Ibra Lebbe Mohamed Zahir & Sunethra Thennakoon & Rev. Pinnawala Sangasumana & Jayani Herath & Buddhika Madurapperuma & Atham Lebbe Iyoob, 2021. "Spatiotemporal Land-Use Changes of Batticaloa Municipal Council in Sri Lanka from 1990 to 2030 Using Land Change Modeler," Geographies, MDPI, vol. 1(3), pages 1-12, September.
  • Handle: RePEc:gam:jgeogr:v:1:y:2021:i:3:p:10-177:d:644965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/1/3/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/1/3/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiran Han & Chengfeng Yang & Jinping Song, 2015. "Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    2. Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megersa Kebede Leta & Tamene Adugna Demissie & Jens Tränckner, 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    2. Motuma Shiferaw Regasa & Michael Nones, 2022. "Past and Future Land Use/Land Cover Changes in the Ethiopian Fincha Sub-Basin," Land, MDPI, vol. 11(8), pages 1-20, August.
    3. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    4. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    5. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    6. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Shaikh Shamim Hasan & Xiangzheng Deng & Zhihui Li & Dongdong Chen, 2017. "Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    8. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    9. Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
    10. Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.
    11. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    12. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    13. Vitus Tankpa & Li Wang & Alfred Awotwi & Leelamber Singh & Samit Thapa & Raphael Ane Atanga & Xiaomeng Guo, 2021. "Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7883-7912, May.
    14. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.
    15. Yipeng Zhang & Yunbing Gao & Bingbo Gao & Yuchun Pan & Mingyang Yan, 2015. "An Efficient Graph-based Method for Long-term Land-use Change Statistics," Sustainability, MDPI, vol. 8(1), pages 1-14, December.
    16. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    17. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    18. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    19. Pingtao Yi & Weiwei Li & Lingyu Li, 2018. "Evaluation and Prediction of City Sustainability Using MCDM and Stochastic Simulation Methods," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    20. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:1:y:2021:i:3:p:10-177:d:644965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.