IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i8p274-d1447726.html
   My bibliography  Save this article

Dynamic Storage Optimization for Communication between AI Agents

Author

Listed:
  • Andrei Tara

    (Department of Computer and Electrical Engineering, Lucian Blaga University of Sibiu, 10 Victoriei, 550024 Sibiu, Romania)

  • Hjalmar K. Turesson

    (Schulich School of Business, York University, North York, ON M3J 1P3, Canada)

  • Nicolae Natea

    (Openfabric Network SRL, 16, Iosif Velceanu, 550057 Sibiu, Romania)

Abstract

Today, AI is primarily narrow, meaning that each model or agent can only perform one task or a narrow range of tasks. However, systems with broad capabilities can be built by connecting multiple narrow AIs. Connecting various AI agents in an open, multi-organizational environment requires a new communication model. Here, we develop a multi-layered ontology-based communication framework. Ontology concepts provide semantic definitions for the agents’ inputs and outputs, enabling them to dynamically identify communication requirements and build processing pipelines. Critical is that the ontology concepts are stored on a decentralized storage medium, allowing fast reading and writing. The multi-layered design offers flexibility by dividing a monolithic ontology model into semantic layers, allowing for the optimization of read and write latencies. We investigate the impact of this optimization by benchmarking experiments on three decentralized storage mediums—IPFS, Tendermint Cosmos, and Hyperledger Fabric—across a wide range of configurations. The increased read-write speeds allow AI agents to communicate efficiently in a decentralized environment utilizing ontology principles, making it easier for AI to be used widely in various applications.

Suggested Citation

  • Andrei Tara & Hjalmar K. Turesson & Nicolae Natea, 2024. "Dynamic Storage Optimization for Communication between AI Agents," Future Internet, MDPI, vol. 16(8), pages 1-13, August.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:8:p:274-:d:1447726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/8/274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/8/274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengmin Tan & Xu Wang & Chuanwen Jiang, 2019. "Privacy-Preserving Energy Scheduling for ESCOs Based on Energy Blockchain Network," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    3. Young-Gyun Ahn & Taeil Kim & Bo-Ram Kim & Min-Kyu Lee, 2022. "A Study on the Development Priority of Smart Shipping Items—Focusing on the Expert Survey," Sustainability, MDPI, vol. 14(11), pages 1-21, June.
    4. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    5. Guilherme Luz Tortorella & Flavio S. Fogliatto & Michel J. Anzanello & Alejandro Mac Cawley Vergara & Roberto Vassolo & Jose Arturo Garza-Reyes, 2023. "Modeling the impact of industry 4.0 base technologies on the development of organizational learning capabilities," Operations Management Research, Springer, vol. 16(3), pages 1091-1104, September.
    6. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    7. Silvia H. Bonilla & Helton R. O. Silva & Marcia Terra da Silva & Rodrigo Franco Gonçalves & José B. Sacomano, 2018. "Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    8. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    9. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    10. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    11. Meennapa Rukhiran & Songwut Boonsong & Paniti Netinant, 2024. "Sustainable Optimizing Performance and Energy Efficiency in Proof of Work Blockchain: A Multilinear Regression Approach," Sustainability, MDPI, vol. 16(4), pages 1-38, February.
    12. Cerchione, Roberto & Centobelli, Piera & Riccio, Emanuela & Abbate, Stefano & Oropallo, Eugenio, 2023. "Blockchain’s coming to hospital to digitalize healthcare services: Designing a distributed electronic health record ecosystem," Technovation, Elsevier, vol. 120(C).
    13. Yeray Mezquita & Ana Belén Gil-González & Angel Martín del Rey & Javier Prieto & Juan Manuel Corchado, 2022. "Towards a Blockchain-Based Peer-to-Peer Energy Marketplace," Energies, MDPI, vol. 15(9), pages 1-20, April.
    14. Sahebi, Iman Ghasemian & Mosayebi, Alireza & Masoomi, Behzad & Marandi, Fatemeh, 2022. "Modeling the enablers for blockchain technology adoption in renewable energy supply chain," Technology in Society, Elsevier, vol. 68(C).
    15. Guillermo Fuertes & Jorge Zamorano & Miguel Alfaro & Manuel Vargas & Jorge Sabattin & Claudia Duran & Rodrigo Ternero & Ricardo Rivera, 2022. "Opportunities of the Technological Trends Linked to Industry 4.0 for Achieve Sustainable Manufacturing Objectives," Sustainability, MDPI, vol. 14(18), pages 1-36, September.
    16. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Heongu Lee & Changhak Yeon, 2021. "Blockchain-Based Traceability for Anti-Counterfeit in Cross-Border E-Commerce Transactions," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    18. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    19. Geneci da Silva Ribeiro Rocha & Letícia de Oliveira & Edson Talamini, 2021. "Blockchain Applications in Agribusiness: A Systematic Review," Future Internet, MDPI, vol. 13(4), pages 1-16, April.
    20. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:8:p:274-:d:1447726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.