IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2917-d762768.html
   My bibliography  Save this article

Implementation and Early Adoption of an Ethereum-Based Electronic Voting System for the Prevention of Fraudulent Voting

Author

Listed:
  • Byeongtae Ahn

    (Liberal & Arts College, Anyang University, Anyang-si 14028, Korea)

Abstract

Today’s online voting systems pose security concerns and cannot be used for public elections, while offline voting costs significantly more. As a result, a decentralized electronic voting system is emerging, backed by blockchain technology. With blockchain technology applied to online voting, the system can guarantee transparency and confidentiality because individual voter information and aggregate information are stored in a distributed fashion. Due to its decentralized nature, a blockchain-based voting system is more secure than the existing central server-based online voting system. In this study, an Ethereum-based electronic voting system was developed. This system resolves the issue of fraudulent voting by enhancing the safety and reliability of the electronic voting system.

Suggested Citation

  • Byeongtae Ahn, 2022. "Implementation and Early Adoption of an Ethereum-Based Electronic Voting System for the Prevention of Fraudulent Voting," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2917-:d:762768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Dong & Zhang, Chengzhenghao & Ping, Jian & Yan, Zheng, 2020. "Smart contract architecture for decentralized energy trading and management based on blockchains," Energy, Elsevier, vol. 199(C).
    2. Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.
    3. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    4. Joo, Sungjun & Choi, Heungsoap & Lee, Juhee, 2015. "Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds," Energy, Elsevier, vol. 90(P1), pages 439-451.
    5. Yi-Cheng Chen & Yueh-Peng Chou & Yung-Chen Chou, 2019. "An Image Authentication Scheme Using Merkle Tree Mechanisms," Future Internet, MDPI, vol. 11(7), pages 1-18, July.
    6. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    7. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    8. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    9. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansur Beştaş & Ruhi Taş & Erdal Akin & Merve Ozkan-Okay & Ömer Aslan & Semih Serkant Aktug, 2023. "A Novel Blockchain-Based Scientific Publishing System," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    2. Naheeda Ali, 2022. "Crimes Related to Cryptocurrency and Regulations to Combat Crypto Crimes," Journal of Policy Research (JPR), Research Foundation for Humanity (RFH), vol. 8(3), pages 289-302, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    2. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    3. Yeray Mezquita & Ana Belén Gil-González & Angel Martín del Rey & Javier Prieto & Juan Manuel Corchado, 2022. "Towards a Blockchain-Based Peer-to-Peer Energy Marketplace," Energies, MDPI, vol. 15(9), pages 1-20, April.
    4. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    5. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    6. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    7. Yue Dai & Nan Li & Rongrong Gu & Xiaodong Zhu, 2018. "Can China’s Carbon Emissions Trading Rights Mechanism Transform its Manufacturing Industry? Based on the Perspective of Enterprise Behavior," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    8. Shengmin Tan & Xu Wang & Chuanwen Jiang, 2019. "Privacy-Preserving Energy Scheduling for ESCOs Based on Energy Blockchain Network," Energies, MDPI, vol. 12(8), pages 1-16, April.
    9. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    10. Fan, John Hua & Todorova, Neda, 2017. "Dynamics of China’s carbon prices in the pilot trading phase," Applied Energy, Elsevier, vol. 208(C), pages 1452-1467.
    11. Silvia H. Bonilla & Helton R. O. Silva & Marcia Terra da Silva & Rodrigo Franco Gonçalves & José B. Sacomano, 2018. "Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    12. Ioanna Andreoulaki & Aikaterini Papapostolou & Vangelis Marinakis, 2024. "Evaluating the Barriers to Blockchain Adoption in the Energy Sector: A Multicriteria Approach Using the Analytical Hierarchy Process for Group Decision Making," Energies, MDPI, vol. 17(6), pages 1-27, March.
    13. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    14. Wang, Xu & Zhu, Lei & Fan, Ying, 2018. "Transaction costs, market structure and efficient coverage of emissions trading scheme: A microlevel study from the pilots in China," Applied Energy, Elsevier, vol. 220(C), pages 657-671.
    15. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    16. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    17. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Weng, Qingqing & Xu, He, 2018. "A review of China’s carbon trading market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 613-619.
    19. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    20. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2917-:d:762768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.