IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i5p175-d1396905.html
   My bibliography  Save this article

Chatbots in Airport Customer Service—Exploring Use Cases and Technology Acceptance

Author

Listed:
  • Isabel Auer

    (Department Management, Communication & IT, MCI|The Entrepreneurial School, Universitätsstrasse 15, 6020 Innsbruck, Austria)

  • Stephan Schlögl

    (Department Management, Communication & IT, MCI|The Entrepreneurial School, Universitätsstrasse 15, 6020 Innsbruck, Austria)

  • Gundula Glowka

    (Department Management, Communication & IT, MCI|The Entrepreneurial School, Universitätsstrasse 15, 6020 Innsbruck, Austria)

Abstract

Throughout the last decade, chatbots have gained widespread adoption across various industries, including healthcare, education, business, e-commerce, and entertainment. These types of artificial, usually cloud-based, agents have also been used in airport customer service, although there has been limited research concerning travelers’ perspectives on this rather techno-centric approach to handling inquiries. Consequently, the goal of the presented study was to tackle this research gap and explore potential use cases for chatbots at airports, as well as investigate travelers’ acceptance of said technology. We employed an extended version of the Technology Acceptance Model considering Perceived Usefulness , Perceived Ease of Use , Trust , and Perceived Enjoyment as predictors of Behavioral Intention , with Affinity for Technology as a potential moderator. A total of n = 191 travelers completed our survey. The results show that Perceived Usefulness , Trust , Perceived Ease of Use , and Perceived Enjoyment positively correlate with the Behavioral Intention to use a chatbot for airport customer service inquiries, with Perceived Usefulness showing the highest impact. Travelers’ Affinity for Technology , on the other hand, does not seem to have any significant effect.

Suggested Citation

  • Isabel Auer & Stephan Schlögl & Gundula Glowka, 2024. "Chatbots in Airport Customer Service—Exploring Use Cases and Technology Acceptance," Future Internet, MDPI, vol. 16(5), pages 1-19, May.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:5:p:175-:d:1396905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/5/175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/5/175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Adam & Michael Wessel & Alexander Benlian, 2021. "AI-based chatbots in customer service and their effects on user compliance," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 427-445, June.
    2. Fernandes, Teresa & Oliveira, Elisabete, 2021. "Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption," Journal of Business Research, Elsevier, vol. 122(C), pages 180-191.
    3. Astrid Dickinger & Mitra Arami & David Meyer, 2008. "The role of perceived enjoyment and social norm in the adoption of technology with network externalities," European Journal of Information Systems, Taylor & Francis Journals, vol. 17(1), pages 4-11, February.
    4. Sheehan, Ben & Jin, Hyun Seung & Gottlieb, Udo, 2020. "Customer service chatbots: Anthropomorphism and adoption," Journal of Business Research, Elsevier, vol. 115(C), pages 14-24.
    5. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariani, Marcello M. & Hashemi, Novin & Wirtz, Jochen, 2023. "Artificial intelligence empowered conversational agents: A systematic literature review and research agenda," Journal of Business Research, Elsevier, vol. 161(C).
    2. Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
    3. Massilva Dekkal & Manon Arcand & Sandrine Prom Tep & Lova Rajaobelina & Line Ricard, 2024. "Factors affecting user trust and intention in adopting chatbots: the moderating role of technology anxiety in insurtech," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 29(3), pages 699-728, September.
    4. Baabdullah, Abdullah M. & Alalwan, Ali Abdallah & Algharabat, Raed S. & Metri, Bhimaraya & Rana, Nripendra P., 2022. "Virtual agents and flow experience: An empirical examination of AI-powered chatbots," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Zhu, Yimin & Zhang, Jiemin & Wu, Jifei & Liu, Yingyue, 2022. "AI is better when I'm sure: The influence of certainty of needs on consumers' acceptance of AI chatbots," Journal of Business Research, Elsevier, vol. 150(C), pages 642-652.
    6. Justina Sidlauskiene & Yannick Joye & Vilte Auruskeviciene, 2023. "AI-based chatbots in conversational commerce and their effects on product and price perceptions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-21, December.
    7. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    8. Rob Kim Marjerison & Youran Zhang & Hanyi Zheng, 2022. "AI in E-Commerce: Application of the Use and Gratification Model to The Acceptance of Chatbots," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    9. Mengjun Li & Ayoung Suh, 2022. "Anthropomorphism in AI-enabled technology: A literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2245-2275, December.
    10. Marikyan, Davit & Papagiannidis, Savvas & Rana, Omer F. & Ranjan, Rajiv & Morgan, Graham, 2022. "“Alexa, let’s talk about my productivity”: The impact of digital assistants on work productivity," Journal of Business Research, Elsevier, vol. 142(C), pages 572-584.
    11. Mark Anthony Camilleri & Ciro Troise, 2023. "Live support by chatbots with artificial intelligence: A future research agenda," Service Business, Springer;Pan-Pacific Business Association, vol. 17(1), pages 61-80, March.
    12. Maduku, Daniel K. & Mpinganjira, Mercy & Rana, Nripendra P. & Thusi, Philile & Ledikwe, Aobakwe & Mkhize, Njabulo Happy-boy, 2023. "Assessing customer passion, commitment, and word-of-mouth intentions in digital assistant usage: The moderating role of technology anxiety," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    13. Alabed, Amani & Javornik, Ana & Gregory-Smith, Diana, 2022. "AI anthropomorphism and its effect on users' self-congruence and self–AI integration: A theoretical framework and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    14. Huang, Yu-Shan (Sandy) & Dootson, Paula, 2022. "Chatbots and service failure: When does it lead to customer aggression," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    15. Jan, Ihsan Ullah & Ji, Seonggoo & Kim, Changju, 2023. "What (de) motivates customers to use AI-powered conversational agents for shopping? The extended behavioral reasoning perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    16. Turnadžić Tamara & Peštek Almir & Činjarević Merima, 2024. "The Role of Social Factors in the Acceptance of Artificial Intelligence-Based Services: the Example of the Banking Sector of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 19(1), pages 145-158.
    17. Dhiman, Neeraj & Jamwal, Mohit & Kumar, Ajay, 2023. "Enhancing value in customer journey by considering the (ad)option of artificial intelligence tools," Journal of Business Research, Elsevier, vol. 167(C).
    18. Badghish, Saeed & Shaik, Aqueeb Sohail & Sahore, Nidhi & Srivastava, Shalini & Masood, Ayesha, 2024. "Can transactional use of AI-controlled voice assistants for service delivery pickup pace in the near future? A social learning theory (SLT) perspective," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    19. Fernandes, Teresa & Oliveira, Elisabete, 2021. "Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption," Journal of Business Research, Elsevier, vol. 122(C), pages 180-191.
    20. Zhou, Cheng & Chang, Qian, 2024. "Informational or emotional? Exploring the relative effects of chatbots’ self-recovery strategies on consumer satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:5:p:175-:d:1396905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.