IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i3p94-d1354523.html
   My bibliography  Save this article

Dynamic Industrial Optimization: A Framework Integrates Online Machine Learning for Processing Parameters Design

Author

Listed:
  • Yu Yao

    (School of Computer Engineering & Science, Shanghai University, Shanghai 200444, China)

  • Quan Qian

    (School of Computer Engineering & Science, Shanghai University, Shanghai 200444, China
    Research Center of Urban Information, Center of Materials Informatics and Data Science, Shanghai University, Shanghai 200444, China
    Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai 200444, China)

Abstract

We develop the online process parameter design (OPPD) framework for efficiently handling streaming data collected from industrial automation equipment. This framework integrates online machine learning, concept drift detection and Bayesian optimization techniques. Initially, concept drift detection mitigates the impact of anomalous data on model updates. Data without concept drift are used for online model training and updating, enabling accurate predictions for the next processing cycle. Bayesian optimization is then employed for inverse optimization and process parameter design. Within OPPD, we introduce the online accelerated support vector regression (OASVR) algorithm for enhanced computational efficiency and model accuracy. OASVR simplifies support vector regression, boosting both speed and durability. Furthermore, we incorporate a dynamic window mechanism to regulate the training data volume for adapting to real-time demands posed by diverse online scenarios. Concept drift detection uses the EI-kMeans algorithm, and the Bayesian inverse design employs an upper confidence bound approach with an adaptive learning rate. Applied to single-crystal fabrication, the OPPD framework outperforms other models, with an RMSE of 0.12, meeting precision demands in production.

Suggested Citation

  • Yu Yao & Quan Qian, 2024. "Dynamic Industrial Optimization: A Framework Integrates Online Machine Learning for Processing Parameters Design," Future Internet, MDPI, vol. 16(3), pages 1-17, March.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:3:p:94-:d:1354523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/3/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/3/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahul Rai & Manoj Kumar Tiwari & Dmitry Ivanov & Alexandre Dolgui, 2021. "Machine learning in manufacturing and industry 4.0 applications," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4773-4778, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    3. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    4. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Jackson, Ilya & Ivanov, Dmitry, 2023. "A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    6. Daniel Fernández & Álvaro Rodríguez-Prieto & Ana María Camacho, 2024. "Data-Analytics-Driven Selection of Die Material in Multi-Material Co-Extrusion of Ti-Mg Alloys," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    7. Tsan-Ming Choi & Alexandre Dolgui & Dmitry Ivanov & Erwin Pesch, 2022. "OR and analytics for digital, resilient, and sustainable manufacturing 4.0," Annals of Operations Research, Springer, vol. 310(1), pages 1-6, March.
    8. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
    9. Zhu, Minghao & Liang, Chen & Yeung, Andy C.L. & Zhou, Honggeng, 2024. "The impact of intelligent manufacturing on labor productivity: An empirical analysis of Chinese listed manufacturing companies," International Journal of Production Economics, Elsevier, vol. 267(C).
    10. Chauhan, Ruchi & Majumder, Arunava & Kumar, Varun, 2023. "The impact of adopting customization policy and sustainability for improving consumer service in a dual-channel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:3:p:94-:d:1354523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.