IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i2p52-d1333981.html
   My bibliography  Save this article

A QoS-Aware IoT Edge Network for Mobile Telemedicine Enabling In-Transit Monitoring of Emergency Patients

Author

Listed:
  • Adwitiya Mukhopadhyay

    (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
    Department of Computer Science, Amrita School of Computing, Mysuru Campus, Amrita Vishwa Vidyapeetham, Bhogadi 570026, India)

  • Aryadevi Remanidevi Devidas

    (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri 690525, India)

  • Venkat P. Rangan

    (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri 690525, India)

  • Maneesha Vinodini Ramesh

    (Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri 690525, India)

Abstract

Addressing the inadequacy of medical facilities in rural communities and the high number of patients affected by ailments that need to be treated immediately is of prime importance for all countries. The various recent healthcare emergency situations bring out the importance of telemedicine and demand rapid transportation of patients to nearby hospitals with available resources to provide the required medical care. Many current healthcare facilities and ambulances are not equipped to provide real-time risk assessment for each patient and dynamically provide the required medical interventions. This work proposes an IoT-based mobile medical edge (IM 2 E) node to be integrated with wearable and portable devices for the continuous monitoring of emergency patients transported via ambulances and it delves deeper into the existing challenges, such as (a) a lack of a simplified patient risk scoring system, (b) the need for architecture that enables seamless communication for dynamically varying QoS requirements, and (c)the need for context-aware knowledge regarding the effect of end-to-end delay and the packet loss ratio (PLR) on the real-time monitoring of health risks in emergency patients. The proposed work builds a data path selection model to identify the most effective path through which to route the data packets in an effective manner. The signal-to-noise interference ratio and the fading in the path are chosen to analyze the suitable path for data transmission.

Suggested Citation

  • Adwitiya Mukhopadhyay & Aryadevi Remanidevi Devidas & Venkat P. Rangan & Maneesha Vinodini Ramesh, 2024. "A QoS-Aware IoT Edge Network for Mobile Telemedicine Enabling In-Transit Monitoring of Emergency Patients," Future Internet, MDPI, vol. 16(2), pages 1-22, February.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:2:p:52-:d:1333981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/2/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/2/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taher M. Ghazal & Mohammad Kamrul Hasan & Muhammad Turki Alshurideh & Haitham M. Alzoubi & Munir Ahmad & Syed Shehryar Akbar & Barween Al Kurdi & Iman A. Akour, 2021. "IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review," Future Internet, MDPI, vol. 13(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yehia Ibrahim Alzoubi & Ahmad Al-Ahmad & Hasan Kahtan & Ashraf Jaradat, 2022. "Internet of Things and Blockchain Integration: Security, Privacy, Technical, and Design Challenges," Future Internet, MDPI, vol. 14(7), pages 1-48, July.
    2. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    3. Amit Sundas & Sumit Badotra & Salil Bharany & Ahmad Almogren & Elsayed M. Tag-ElDin & Ateeq Ur Rehman, 2022. "HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    4. Urmila Pilania & Rohit Tanwar & Mazdak Zamani & Azizah Abdul Manaf, 2022. "Framework for Video Steganography Using Integer Wavelet Transform and JPEG Compression," Future Internet, MDPI, vol. 14(9), pages 1-16, August.
    5. Tariq Ahamed Ahanger & Fadl Dahan & Usman Tariq & Imdad Ullah, 2022. "Quantum Inspired Task Optimization for IoT Edge Fog Computing Environment," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    6. Sarantis Kalafatidis & Sotiris Skaperas & Vassilis Demiroglou & Lefteris Mamatas & Vassilis Tsaoussidis, 2022. "Logically-Centralized SDN-Based NDN Strategies for Wireless Mesh Smart-City Networks," Future Internet, MDPI, vol. 15(1), pages 1-21, December.
    7. Ilja Nastjuk & Simon Trang & Elpiniki I. Papageorgiou, 2022. "Smart cities and smart governance models for future cities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1917-1924, December.
    8. Divya Biligere Shivanna & Thompson Stephan & Fadi Al-Turjman & Manjur Kolhar & Sinem Alturjman, 2022. "IoMT-Based Automated Diagnosis of Autoimmune Diseases Using MultiStage Classification Scheme for Sustainable Smart Cities," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    9. Salem Ahmed Alabdali & Salvatore Flavio Pileggi & Dilek Cetindamar, 2023. "Influential Factors, Enablers, and Barriers to Adopting Smart Technology in Rural Regions: A Literature Review," Sustainability, MDPI, vol. 15(10), pages 1-38, May.
    10. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    11. Daniela REISZ & Raluca TUDOR & Iulia CRISAN, 2022. "The Role of Small Medical Units in a Smart City The Case of Timisoara," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 10, pages 289-298, November.
    12. Fabián Silva-Aravena & Jenny Morales, 2022. "Dynamic Surgical Waiting List Methodology: A Networking Approach," Mathematics, MDPI, vol. 10(13), pages 1-23, July.

    More about this item

    Keywords

    IoT; edge; fog; VANETs; Wi-Fi; telemedicine; routing;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:2:p:52-:d:1333981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.