Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Haokun Fang & Quan Qian, 2021. "Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning," Future Internet, MDPI, vol. 13(4), pages 1-20, April.
- Xin Gu & Fariza Sabrina & Zongwen Fan & Shaleeza Sohail, 2023. "A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems," IJERPH, MDPI, vol. 20(15), pages 1-25, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Habib Ullah Manzoor & Attia Shabbir & Ao Chen & David Flynn & Ahmed Zoha, 2024. "A Survey of Security Strategies in Federated Learning: Defending Models, Data, and Privacy," Future Internet, MDPI, vol. 16(10), pages 1-37, October.
- Qiang Duan & Zhihui Lu, 2024. "Edge Cloud Computing and Federated–Split Learning in Internet of Things," Future Internet, MDPI, vol. 16(7), pages 1-4, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
- Lu Han & Xiaohong Huang & Dandan Li & Yong Zhang, 2023. "RingFFL: A Ring-Architecture-Based Fair Federated Learning Framework," Future Internet, MDPI, vol. 15(2), pages 1-20, February.
- Vivek Kumar Prasad & Pronaya Bhattacharya & Darshil Maru & Sudeep Tanwar & Ashwin Verma & Arunendra Singh & Amod Kumar Tiwari & Ravi Sharma & Ahmed Alkhayyat & Florin-Emilian Țurcanu & Maria Simona Ra, 2022. "Federated Learning for the Internet-of-Medical-Things: A Survey," Mathematics, MDPI, vol. 11(1), pages 1-47, December.
- Surbhi Bhatia Khan & Mohammed Alojail & Moteeb Al Moteri, 2023. "Advancing Disability Management in Information Systems: A Novel Approach through Bidirectional Federated Learning-Based Gradient Optimization," Mathematics, MDPI, vol. 12(1), pages 1-20, December.
- Cheng, Haoyuan & Lu, Tianguang & Hao, Ran & Li, Jiamei & Ai, Qian, 2024. "Incentive-based demand response optimization method based on federated learning with a focus on user privacy protection," Applied Energy, Elsevier, vol. 358(C).
- Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
More about this item
Keywords
federated learning; differential privacy; homomorphic encryption; privacy; accuracy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:9:p:310-:d:1239086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.