IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i2p68-d1062666.html
   My bibliography  Save this article

RingFFL: A Ring-Architecture-Based Fair Federated Learning Framework

Author

Listed:
  • Lu Han

    (School of Computer Science (National Pilot Software Engineering School), University of Posts and Telecommunication, Beijing 100876, China)

  • Xiaohong Huang

    (School of Computer Science (National Pilot Software Engineering School), University of Posts and Telecommunication, Beijing 100876, China)

  • Dandan Li

    (School of Computer Science (National Pilot Software Engineering School), University of Posts and Telecommunication, Beijing 100876, China)

  • Yong Zhang

    (Zhongguancun Laboratory, Beijing 100094, China)

Abstract

In the ring-architecture-based federated learning framework, security and fairness are severely compromised when dishonest clients abort the training process after obtaining useful information. To solve the problem, we propose a Ring- architecture-based F air F ederated L earning framework called RingFFL, in which we design a penalty mechanism for FL. Before the training starts in each round, all clients that will participate in the training pay deposits in a set order and record the transactions on the blockchain to ensure that they are not tampered with. Subsequently, the clients perform the FL training process, and the correctness of the models transmitted by the clients is guaranteed by the HASH algorithm during the training process. When all clients perform honestly, each client can obtain the final model, and the number of digital currencies in each client’s wallet is kept constant; otherwise, the deposits of clients who leave halfway will be compensated to the clients who perform honestly during the training process. In this way, through the penalty mechanism, all clients either obtain the final model or are compensated, thus ensuring the fairness of federated learning. The security analysis and experimental results show that RingFFL not only guarantees the accuracy and security of the federated learning model but also guarantees the fairness.

Suggested Citation

  • Lu Han & Xiaohong Huang & Dandan Li & Yong Zhang, 2023. "RingFFL: A Ring-Architecture-Based Fair Federated Learning Framework," Future Internet, MDPI, vol. 15(2), pages 1-20, February.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:68-:d:1062666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/2/68/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/2/68/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haokun Fang & Quan Qian, 2021. "Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning," Future Internet, MDPI, vol. 13(4), pages 1-20, April.
    2. Tanweer Alam & Ruchi Gupta, 2022. "Federated Learning and Its Role in the Privacy Preservation of IoT Devices," Future Internet, MDPI, vol. 14(9), pages 1-22, August.
    3. Ahmed A. Al-Saedi & Veselka Boeva & Emiliano Casalicchio, 2022. "FedCO: Communication-Efficient Federated Learning via Clustering Optimization," Future Internet, MDPI, vol. 14(12), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivek Kumar Prasad & Pronaya Bhattacharya & Darshil Maru & Sudeep Tanwar & Ashwin Verma & Arunendra Singh & Amod Kumar Tiwari & Ravi Sharma & Ahmed Alkhayyat & Florin-Emilian Țurcanu & Maria Simona Ra, 2022. "Federated Learning for the Internet-of-Medical-Things: A Survey," Mathematics, MDPI, vol. 11(1), pages 1-47, December.
    2. Qiang Duan & Zhihui Lu, 2024. "Edge Cloud Computing and Federated–Split Learning in Internet of Things," Future Internet, MDPI, vol. 16(7), pages 1-4, June.
    3. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    4. Rezak Aziz & Soumya Banerjee & Samia Bouzefrane & Thinh Le Vinh, 2023. "Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm," Future Internet, MDPI, vol. 15(9), pages 1-25, September.
    5. Cheng, Haoyuan & Lu, Tianguang & Hao, Ran & Li, Jiamei & Ai, Qian, 2024. "Incentive-based demand response optimization method based on federated learning with a focus on user privacy protection," Applied Energy, Elsevier, vol. 358(C).
    6. Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:68-:d:1062666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.