IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i4p94-d531973.html
   My bibliography  Save this article

Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning

Author

Listed:
  • Haokun Fang

    (School of Computer Engineering & Science, Shanghai University, Shanghai 200444, China
    Current address: NO.99 Shangda Road, BaoShan District, Shanghai 200444, China.)

  • Quan Qian

    (School of Computer Engineering & Science, Shanghai University, Shanghai 200444, China
    Materials Genome Institute, Shanghai University, Shanghai 200444, China)

Abstract

Privacy protection has been an important concern with the great success of machine learning. In this paper, it proposes a multi-party privacy preserving machine learning framework, named PFMLP, based on partially homomorphic encryption and federated learning. The core idea is all learning parties just transmitting the encrypted gradients by homomorphic encryption. From experiments, the model trained by PFMLP has almost the same accuracy, and the deviation is less than 1%. Considering the computational overhead of homomorphic encryption, we use an improved Paillier algorithm which can speed up the training by 25–28%. Moreover, comparisons on encryption key length, the learning network structure, number of learning clients, etc. are also discussed in detail in the paper.

Suggested Citation

  • Haokun Fang & Quan Qian, 2021. "Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning," Future Internet, MDPI, vol. 13(4), pages 1-20, April.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:4:p:94-:d:531973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/4/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/4/94/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vivek Kumar Prasad & Pronaya Bhattacharya & Darshil Maru & Sudeep Tanwar & Ashwin Verma & Arunendra Singh & Amod Kumar Tiwari & Ravi Sharma & Ahmed Alkhayyat & Florin-Emilian Țurcanu & Maria Simona Ra, 2022. "Federated Learning for the Internet-of-Medical-Things: A Survey," Mathematics, MDPI, vol. 11(1), pages 1-47, December.
    2. Lu Han & Xiaohong Huang & Dandan Li & Yong Zhang, 2023. "RingFFL: A Ring-Architecture-Based Fair Federated Learning Framework," Future Internet, MDPI, vol. 15(2), pages 1-20, February.
    3. Cheng, Haoyuan & Lu, Tianguang & Hao, Ran & Li, Jiamei & Ai, Qian, 2024. "Incentive-based demand response optimization method based on federated learning with a focus on user privacy protection," Applied Energy, Elsevier, vol. 358(C).
    4. Rezak Aziz & Soumya Banerjee & Samia Bouzefrane & Thinh Le Vinh, 2023. "Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm," Future Internet, MDPI, vol. 15(9), pages 1-25, September.
    5. Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    6. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:4:p:94-:d:531973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.