IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i8p251-d1202950.html
   My bibliography  Save this article

Intelligent Caching with Graph Neural Network-Based Deep Reinforcement Learning on SDN-Based ICN

Author

Listed:
  • Jiacheng Hou

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Tianhao Tao

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Haoye Lu

    (David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Amiya Nayak

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

Information-centric networking (ICN) has gained significant attention due to its in-network caching and named-based routing capabilities. Caching plays a crucial role in managing the increasing network traffic and improving the content delivery efficiency. However, caching faces challenges as routers have limited cache space while the network hosts tens of thousands of items. This paper focuses on enhancing the cache performance by maximizing the cache hit ratio in the context of software-defined networking–ICN (SDN-ICN). We propose a statistical model that generates users’ content preferences, incorporating key elements observed in real-world scenarios. Furthermore, we introduce a graph neural network–double deep Q-network (GNN-DDQN) agent to make caching decisions for each node based on the user request history. Simulation results demonstrate that our caching strategy achieves a cache hit ratio 34.42% higher than the state-of-the-art policy. We also establish the robustness of our approach, consistently outperforming various benchmark strategies.

Suggested Citation

  • Jiacheng Hou & Tianhao Tao & Haoye Lu & Amiya Nayak, 2023. "Intelligent Caching with Graph Neural Network-Based Deep Reinforcement Learning on SDN-Based ICN," Future Internet, MDPI, vol. 15(8), pages 1-20, July.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:8:p:251-:d:1202950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/8/251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/8/251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kao Ge & Jian-Qiang Zhao & Yan-Yong Zhao, 2022. "GR-GNN: Gated Recursion-Based Graph Neural Network Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-13, April.
    2. Qi Lin & Shuo Yu & Ke Sun & Wenhong Zhao & Osama Alfarraj & Amr Tolba & Feng Xia, 2022. "Robust Graph Neural Networks via Ensemble Learning," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    3. Salahadin Seid Musa & Marco Zennaro & Mulugeta Libsie & Ermanno Pietrosemoli, 2022. "Convergence of Information-Centric Networks and Edge Intelligence for IoV: Challenges and Future Directions," Future Internet, MDPI, vol. 14(7), pages 1-31, June.
    4. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kleyton da Costa, 2023. "Anomaly Detection in Global Financial Markets with Graph Neural Networks and Nonextensive Entropy," Papers 2308.02914, arXiv.org, revised Aug 2023.
    2. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    3. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    4. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    5. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    6. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    8. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    9. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    10. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    11. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    12. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    13. Zichen Lu & Ying Yan, 2024. "Temperature Control of Fuel Cell Based on PEI-DDPG," Energies, MDPI, vol. 17(7), pages 1-19, April.
    14. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    15. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    16. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    17. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    18. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    19. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    20. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:8:p:251-:d:1202950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.