Effective and Efficient DDoS Attack Detection Using Deep Learning Algorithm, Multi-Layer Perceptron
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Demir, Kubilay & Nayyer, Ferdaus & Suri, Neeraj, 2019. "MPTCP-H: A DDoS attack resilient transport protocol to secure wide area measurement systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 84-101.
- Filippo Rebecchi & Julien Boite & Pierre‐Alexis Nardin & Mathieu Bouet & Vania Conan, 2019. "DDoS protection with stateful software‐defined networking," International Journal of Network Management, John Wiley & Sons, vol. 29(1), January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdulkader Hajjouz, 2023. "A CatBoost-Based Approach for High-Accuracy Botnet Detection," Technium, Technium Science, vol. 15(1), pages 26-32.
- Abbas Javed & Amna Ehtsham & Muhammad Jawad & Muhammad Naeem Awais & Ayyaz-ul-Haq Qureshi & Hadi Larijani, 2024. "Implementation of Lightweight Machine Learning-Based Intrusion Detection System on IoT Devices of Smart Homes," Future Internet, MDPI, vol. 16(6), pages 1-22, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
- Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
- Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
- Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
- Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
- Herodotos Herodotou & Sheraz Aslam, 2022. "Data-Intensive Computing in Smart Microgrids: Volume II," Energies, MDPI, vol. 15(16), pages 1-2, August.
- Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
- Yannik Hahn & Tristan Langer & Richard Meyes & Tobias Meisen, 2023. "Time Series Dataset Survey for Forecasting with Deep Learning," Forecasting, MDPI, vol. 5(1), pages 1-21, March.
- Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
- Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
- Ullah, Asad & Zhang, Qingyu & Raza, Syed Ali & Ali, Sajid, 2021. "Renewable energy: Is it a global challenge or opportunity? Focusing on different income level countries through Panel Smooth Transition Regression Model," Renewable Energy, Elsevier, vol. 177(C), pages 689-699.
- Yukta Mehta & Rui Xu & Benjamin Lim & Jane Wu & Jerry Gao, 2023. "A Review for Green Energy Machine Learning and AI Services," Energies, MDPI, vol. 16(15), pages 1-30, July.
- Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
- Nasir Ayub & Usman Ali & Kainat Mustafa & Syed Muhammad Mohsin & Sheraz Aslam, 2022. "Predictive Data Analytics for Electricity Fraud Detection Using Tuned CNN Ensembler in Smart Grid," Forecasting, MDPI, vol. 4(4), pages 1-13, November.
- Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
More about this item
Keywords
DDoS attack; attack; attack detection; botnet; MLP classifier;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:76-:d:1069521. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.