IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i2p73-d1067233.html
   My bibliography  Save this article

I4.0I: A New Way to Rank How Involved a Company Is in the Industry 4.0 Era

Author

Listed:
  • Vitória Francesca Biasibetti Zilli

    (Institute of Technology on Semicondutors—itt Chip, University of Vale do Rio dos Sinos, São Leopoldo 93022-750, Brazil)

  • Cesar David Paredes Crovato

    (Institute of Technology on Semicondutors—itt Chip, University of Vale do Rio dos Sinos, São Leopoldo 93022-750, Brazil)

  • Rodrigo da Rosa Righi

    (Institute of Technology on Semicondutors—itt Chip, University of Vale do Rio dos Sinos, São Leopoldo 93022-750, Brazil)

  • Rodrigo Ivan Goytia Mejia

    (Institute of Technology on Semicondutors—itt Chip, University of Vale do Rio dos Sinos, São Leopoldo 93022-750, Brazil)

  • Giovani Pesenti

    (HT Micron Semiconductors S.A., São Leopoldo 93022-750, Brazil)

  • Dhananjay Singh

    (ReSENSE Lab, Hankuk University of Foreign Studies, HUFS, Seoul 02450, Republic of Korea)

Abstract

Cloud, IoT, big data, and artificial intelligence are currently very present in the industrial and academic areas, being drivers of technological revolution. Such concepts are closely related to Industry 4.0, which can be defined as the idea of a flexible, technological, and connected factory, encompassing the shop floor itself and its relationship between workers, the chain of supply, and final products. Some studies have already been developed to quantify a company’s level of maturity within the scope of Industry 4.0. However, there is a lack of a global and unique index that, by receiving as input how many implemented technologies a company has, enables its classification and therefore, comparison with other companies of the same genre. Thus, we present the I4.0I (Industry 4.0 Index), an index that allows companies to measure how far they are in Industry 4.0, enabling competitiveness between factories and stimulating economic and technological growth. To assess the method, companies in the technology sector received and answered a questionnaire in which they marked the technologies they used over the years and the income obtained. The results were used to compare the I4.0I with the profit measured in the same period, proving that the greater the use of technology, the greater the benefits for the company.

Suggested Citation

  • Vitória Francesca Biasibetti Zilli & Cesar David Paredes Crovato & Rodrigo da Rosa Righi & Rodrigo Ivan Goytia Mejia & Giovani Pesenti & Dhananjay Singh, 2023. "I4.0I: A New Way to Rank How Involved a Company Is in the Industry 4.0 Era," Future Internet, MDPI, vol. 15(2), pages 1-20, February.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:73-:d:1067233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/2/73/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/2/73/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weller, Christian & Kleer, Robin & Piller, Frank T., 2015. "Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited," International Journal of Production Economics, Elsevier, vol. 164(C), pages 43-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Falkonakis & Saeid Lotfian & Baran Yeter, 2024. "Multi-Criteria Decision Analysis of an Innovative Additive Manufacturing Technique for Onboard Maintenance," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    2. Ding, Jin & Baumers, Martin & Clark, Elizabeth A. & Wildman, Ricky D., 2021. "The economics of additive manufacturing: Towards a general cost model including process failure," International Journal of Production Economics, Elsevier, vol. 237(C).
    3. Ukobitz, Desirée Valeria & Faullant, Rita, 2022. "The relative impact of isomorphic pressures on the adoption of radical technology: Evidence from 3D printing," Technovation, Elsevier, vol. 113(C).
    4. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    5. David M. Goldberg & Jason K. Deane & Terry R. Rakes & Loren Paul Rees, 2022. "3D Printing Technology and the Market Value of the Firm," Information Systems Frontiers, Springer, vol. 24(4), pages 1379-1392, August.
    6. Shivam Gupta & Sachin Modgil & Piera Centobelli & Roberto Cerchione & Serena Strazzullo, 2022. "Additive Manufacturing and Green Information Systems as Technological Capabilities for Firm Performance," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 515-534, December.
    7. Guo, Shu & Choi, Tsan-Ming & Chung, Sai-Ho, 2022. "Self-design fun: Should 3D printing be employed in mass customization operations?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 883-897.
    8. Beltagui, Ahmad & Sesis, Achilleas & Stylos, Nikolaos, 2021. "A bricolage perspective on democratising innovation: The case of 3D printing in makerspaces," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Belhadi, Amine & Kamble, Sachin S. & Venkatesh, Mani & Chiappetta Jabbour, Charbel Jose & Benkhati, Imane, 2022. "Building supply chain resilience and efficiency through additive manufacturing: An ambidextrous perspective on the dynamic capability view," International Journal of Production Economics, Elsevier, vol. 249(C).
    10. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    11. Birtchnell, Thomas & Böhme, Tillmann & Gorkin, Robert, 2017. "3D printing and the third mission: The university in the materialization of intellectual capital," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 240-249.
    12. Julian Schwierzy & Robert Dehghan & Sebastian Schmidt & Elisa Rodepeter & Andreas Stoemmer & Kaan Uctum & Jan Kinne & David Lenz & Hanna Hottenrott, 2022. "Technology Mapping Using WebAI: The Case of 3D Printing," Papers 2201.01125, arXiv.org.
    13. Hayakawa, Kazunobu & Mukunoki, Hiroshi, 2022. "How does additive manufacturing change trade?: evidence from trade in sound recordings," IDE Discussion Papers 848, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    14. Marco Bettiol & Mauro Capestro & Eleonora Di Maria, 2017. "Industry 4.0: the stragic role of marketing," "Marco Fanno" Working Papers 0213, Dipartimento di Scienze Economiche "Marco Fanno".
    15. Foshammer, Jeppe & Søberg, Peder Veng & Helo, Petri & Ituarte, Iñigo Flores, 2022. "Identification of aftermarket and legacy parts suitable for additive manufacturing: A knowledge management-based approach," International Journal of Production Economics, Elsevier, vol. 253(C).
    16. Sun, Luoyi & Hua, Guowei & Cheng, T.C.E. & Wang, Yixiao, 2020. "How to price 3D-printed products? Pricing strategy for 3D printing platforms," International Journal of Production Economics, Elsevier, vol. 226(C).
    17. Candi, Marina & Beltagui, Ahmad, 2019. "Effective use of 3D printing in the innovation process," Technovation, Elsevier, vol. 80, pages 63-73.
    18. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    19. Frank, Alejandro G. & Mendes, Glauco H.S. & Ayala, Néstor F. & Ghezzi, Antonio, 2019. "Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 341-351.
    20. Chekurov, Sergei & Metsä-Kortelainen, Sini & Salmi, Mika & Roda, Irene & Jussila, Ari, 2018. "The perceived value of additively manufactured digital spare parts in industry: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 205(C), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:73-:d:1067233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.