IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2022i1p17-d1018146.html
   My bibliography  Save this article

Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast

Author

Listed:
  • Yunchuan Liu

    (Division of Science Mathematics and Technology, Governors State University, University Park, IL 60484, USA)

  • Amir Ghasemkhani

    (Department of Computer Science and Engineering, California State University San Bernardino, San Bernardino, CA 92407, USA)

  • Lei Yang

    (Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV 89557, USA)

Abstract

This paper investigates the short-term wind farm generation forecast. It is observed from the real wind farm generation measurements that wind farm generation exhibits distinct features, such as the non-stationarity and the heterogeneous dynamics of ramp and non-ramp events across different classes of wind turbines. To account for the distinct features of wind farm generation, we propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving neural networks-based short-term wind farm generation forecast. Using DSPOT, the proposed method first classifies the wind farm generation data into ramp and non-ramp datasets, where time-varying dynamics are taken into account by utilizing dynamic ramp thresholds to separate the ramp and non-ramp events. We then train different neural networks based on each dataset to learn the different dynamics of wind farm generation by the NeuroEvolution of Augmenting Topologies (NEAT), which can obtain the best network topology and weighting parameters. As the efficacy of the neural networks relies on the quality of the training datasets (i.e., the classification accuracy of the ramp and non-ramp events), a Bayesian optimization-based approach is developed to optimize the parameters of DSPOT to enhance the quality of the training datasets and the corresponding performance of the neural networks. Based on the developed self-evolving neural networks, both distributional and point forecasts are developed. The experimental results show that compared with other forecast approaches, the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp events. The experiment results indicate that the accuracy improvement in a 60 min horizon forecast in terms of the mean absolute error (MAE) is at least 33.6 % for the whole year data and at least 37 % for the ramp events. Moreover, the distributional forecast in terms of the continuous rank probability score (CRPS) is improved by at least 35.8 % for the whole year data and at least 35.2 % for the ramp events.

Suggested Citation

  • Yunchuan Liu & Amir Ghasemkhani & Lei Yang, 2022. "Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast," Future Internet, MDPI, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:gam:jftint:v:15:y:2022:i:1:p:17-:d:1018146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/1/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/1/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Pinson & Henrik Madsen, 2012. "Adaptive modelling and forecasting of offshore wind power fluctuations with Markov‐switching autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 281-313, July.
    2. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    3. Zuluaga, Carlos D. & Álvarez, Mauricio A. & Giraldo, Eduardo, 2015. "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, Elsevier, vol. 156(C), pages 321-330.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    2. Hu, Jianming & Wang, Jianzhou & Xiao, Liqun, 2017. "A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts," Renewable Energy, Elsevier, vol. 114(PB), pages 670-685.
    3. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    4. Kui Yang & Bofu Wang & Xiang Qiu & Jiahua Li & Yuze Wang & Yulu Liu, 2022. "Multi-Step Short-Term Wind Speed Prediction Models Based on Adaptive Robust Decomposition Coupled with Deep Gated Recurrent Unit," Energies, MDPI, vol. 15(12), pages 1-24, June.
    5. Li, Chaoshun & Xiao, Zhengguang & Xia, Xin & Zou, Wen & Zhang, Chu, 2018. "A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 131-144.
    6. Ines Würth & Laura Valldecabres & Elliot Simon & Corinna Möhrlen & Bahri Uzunoğlu & Ciaran Gilbert & Gregor Giebel & David Schlipf & Anton Kaifel, 2019. "Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36," Energies, MDPI, vol. 12(4), pages 1-30, February.
    7. Liu, Guangbiao & Zhou, Jianzhong & Jia, Benjun & He, Feifei & Yang, Yuqi & Sun, Na, 2019. "Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method," Applied Energy, Elsevier, vol. 238(C), pages 643-667.
    8. Qunli Wu & Chenyang Peng, 2016. "A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction," Energies, MDPI, vol. 9(8), pages 1-20, July.
    9. Song, Zhe & Jiang, Yu & Zhang, Zijun, 2014. "Short-term wind speed forecasting with Markov-switching model," Applied Energy, Elsevier, vol. 130(C), pages 103-112.
    10. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    11. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Wang, Xin & Sun, Mei, 2021. "A novel prediction model of multi-layer symbolic pattern network: Based on causation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    13. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    14. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    15. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    16. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    17. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    18. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    19. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    20. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2022:i:1:p:17-:d:1018146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.