IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i7p202-d852599.html
   My bibliography  Save this article

Towards Strengthening the Resilience of IoV Networks—A Trust Management Perspective

Author

Listed:
  • Yingxun Wang

    (Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
    Faculty of Mechanical and Electrical Engineering, Qilu Institute of Technology, Jinan 250200, China)

  • Hushairi Zen

    (Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia)

  • Mohamad Faizrizwan Mohd Sabri

    (Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia)

  • Xiang Wang

    (Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
    Faculty of Mechanical and Electrical Engineering, Qilu Institute of Technology, Jinan 250200, China)

  • Lee Chin Kho

    (Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia)

Abstract

Over the past decade or so, considerable and rapid advancements in the state of the art within the promising paradigms of the Internet of Things (IoT) and Artificial Intelligence (AI) have accelerated the development of conventional Vehicular Ad Hoc Networks (VANETS) into the Internet of Vehicles (IoV), thereby bringing both connected and autonomous driving much closer to realization. IoV is a new concept in the Intelligent Traffic System (ITS) and an extended application of IoV in intelligent transportation. It enhances the existing capabilities of mobile ad hoc networks by integrating them with IoT so as to build an integrated and unified vehicle-to-vehicle network. It is worth mentioning that academic and industrial researchers are paying increasing attention to the concept of trust. Reliable trust models and accurate trust assessments are anticipated to improve the security of the IoV. This paper, therefore, focuses on the existing trustworthiness management models along with their corresponding trust parameters, as well as the corresponding trust evaluation parameters and simulation, which provide the basis for intelligent and efficient model suggestions and optimal parameter integration. In addition, this paper also puts forward some open research directions that need to be seriously solved before trust can play its due role in enhancing IoV network elasticity.

Suggested Citation

  • Yingxun Wang & Hushairi Zen & Mohamad Faizrizwan Mohd Sabri & Xiang Wang & Lee Chin Kho, 2022. "Towards Strengthening the Resilience of IoV Networks—A Trust Management Perspective," Future Internet, MDPI, vol. 14(7), pages 1-21, June.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:7:p:202-:d:852599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/7/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/7/202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim Abdo Rai & Riaz Ahmed Shaikh & Syed Raheel Hassan, 2020. "A hybrid dual-mode trust management scheme for vehicular networks," International Journal of Distributed Sensor Networks, , vol. 16(7), pages 15501477209, July.
    2. Evgenia Kapassa & Marinos Themistocleous & Klitos Christodoulou & Elias Iosif, 2021. "Blockchain Application in Internet of Vehicles: Challenges, Contributions and Current Limitations," Future Internet, MDPI, vol. 13(12), pages 1-32, December.
    3. Adnan Mahmood & Wei Emma Zhang & Quan Z. Sheng, 2019. "Software-Defined Heterogeneous Vehicular Networking: The Architectural Design and Open Challenges," Future Internet, MDPI, vol. 11(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soukaina Bouarourou & Abderrahim Zannou & El Habib Nfaoui & Abdelhak Boulaalam, 2023. "An Efficient Model-Based Clustering via Joint Multiple Sink Placement for WSNs," Future Internet, MDPI, vol. 15(2), pages 1-27, February.
    2. Lirui Bi & Tasiu Muazu & Omaji Samuel, 2022. "IoT: A Decentralized Trust Management System Using Blockchain-Empowered Federated Learning," Sustainability, MDPI, vol. 15(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    2. Evgenia Kapassa & Marinos Themistocleous, 2022. "Blockchain Technology Applied in IoV Demand Response Management: A Systematic Literature Review," Future Internet, MDPI, vol. 14(5), pages 1-19, April.
    3. Muhammad Saad & Muhammad Khalid Khan & Maaz Bin Ahmad, 2022. "Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    4. Horst Treiblmaier, 2022. "What Is Coming across the Horizon and How Can We Handle It? Bitcoin Scenarios as a Starting Point for Rigorous and Relevant Research," Future Internet, MDPI, vol. 14(6), pages 1-15, May.
    5. Haqi Khalid & Shaiful Jahari Hashim & Sharifah Mumtazah Syed Ahmad & Fazirulhisyam Hashim & Muhammad Akmal Chaudhary, 2021. "A New Hybrid Online and Offline Multi-Factor Cross-Domain Authentication Method for IoT Applications in the Automotive Industry," Energies, MDPI, vol. 14(21), pages 1-34, November.
    6. Marta Biegańska, 2022. "IoT-Based Decentralized Energy Systems," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Zeinab Teimoori & Abdulsalam Yassine, 2022. "A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation," Sustainability, MDPI, vol. 14(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:7:p:202-:d:852599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.