IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i3p60-d210719.html
   My bibliography  Save this article

Hot Topic Community Discovery on Cross Social Networks

Author

Listed:
  • Xuan Wang

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Bofeng Zhang

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Furong Chang

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
    School of Computer Science and Technology, Kashgar University, Kashgar 844006, China)

Abstract

The rapid development of online social networks has allowed users to obtain information, communicate with each other and express different opinions. Generally, in the same social network, users tend to be influenced by each other and have similar views. However, on another social network, users may have opposite views on the same event. Therefore, research undertaken on a single social network is unable to meet the needs of research on hot topic community discovery. “Cross social network” refers to multiple social networks. The integration of information from multiple social network platforms forms a new unified dataset. In the dataset, information from different platforms for the same event may contain similar or unique topics. This paper proposes a hot topic discovery method on cross social networks. Firstly, text data from different social networks are fused to build a unified model. Then, we obtain latent topic distributions from the unified model using the Labeled Biterm Latent Dirichlet Allocation (LB-LDA) model. Based on the distributions, similar topics are clustered to form several topic communities. Finally, we choose hot topic communities based on their scores. Experiment result on data from three social networks prove that our model is effective and has certain application value.

Suggested Citation

  • Xuan Wang & Bofeng Zhang & Furong Chang, 2019. "Hot Topic Community Discovery on Cross Social Networks," Future Internet, MDPI, vol. 11(3), pages 1-16, March.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:3:p:60-:d:210719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/3/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/3/60/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Han & Tu, Lilan & Guo, Yifei & Chen, Juan, 2022. "The influence of cross-platform and spread sources on emotional information spreading in the 2E-SIR two-layer network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    2. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    3. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    4. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    5. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    6. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    7. Higham, Kyle & de Rassenfosse, Gaetan & Jaffe, Adam B, 2020. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," SocArXiv 49qxk_v1, Center for Open Science.
    8. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    9. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    10. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    11. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    12. Olson, Alex, 2020. "Reading the city through its neighbourhoods: Deep text embeddings of Yelp reviews as a basis for determining similarity and change," SocArXiv 8jbvg_v1, Center for Open Science.
    13. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    14. Marcin Chlebus & Maciej Stefan Świtała, 2020. "So close and so far. Finding similar tendencies in econometrics and machine learning papers. Topic models comparison," Working Papers 2020-16, Faculty of Economic Sciences, University of Warsaw.
    15. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    16. Hutchison, Paul D. & Daigle, Ronald J. & George, Benjamin, 2018. "Application of latent semantic analysis in AIS academic research," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 83-96.
    17. Emad Mohamed & Sayed A. Mostafa, 2019. "Computing Happiness from Textual Data," Stats, MDPI, vol. 2(3), pages 1-24, July.
    18. Jake R. Nelson & Tony H. Grubesic, 2018. "Environmental Justice: A Panoptic Overview Using Scientometrics," Sustainability, MDPI, vol. 10(4), pages 1-18, March.
    19. Lüdering Jochen & Winker Peter, 2016. "Forward or Backward Looking? The Economic Discourse and the Observed Reality," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(4), pages 483-515, August.
    20. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:3:p:60-:d:210719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.