IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i3p58-d210478.html
   My bibliography  Save this article

IoH: A Platform for the Intelligence of Home with a Context Awareness and Ambient Intelligence Approach

Author

Listed:
  • Luis Gomes

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic Institute of Porto (IPP), P-4200-465 Porto, Portugal)

  • Carlos Ramos

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic Institute of Porto (IPP), P-4200-465 Porto, Portugal)

  • Aria Jozi

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic Institute of Porto (IPP), P-4200-465 Porto, Portugal)

  • Bruno Serra

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic Institute of Porto (IPP), P-4200-465 Porto, Portugal)

  • Lucas Paiva

    (IFSC—Instituto Federal de Santa Catarina (Campus Florianópolis Centro), 88020-300 Florianópolis, Santa Catarina, Brazil)

  • Zita Vale

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic Institute of Porto (IPP), P-4200-465 Porto, Portugal)

Abstract

This paper presents IoH (Intelligence of Home), a platform developed to test some basic intelligent behaviors in Home context. Internet of Things, ambient intelligence and context awareness approaches motivated the development of IoH. The platform involves six layers, responsible by connectivity, persistency, unification, Internet of Things integration, subsystems integration and user interface. The integrated subsystems involve intelligent systems for light control, television brightness control, desk light control, persons counting and air conditioner control. The IoH platform is then tested for a real building, and results and conclusions are obtained. Different intelligent methods and technologies are used, form the use of a diversity of sensors, actuators, and controllers and processing units to a set of artificial intelligence approaches varying from machine learning and optimization algorithms to the use of sensor fusion and computer vision. The use of IoH day-by-day demonstrated an intelligent performance for the real building occupants.

Suggested Citation

  • Luis Gomes & Carlos Ramos & Aria Jozi & Bruno Serra & Lucas Paiva & Zita Vale, 2019. "IoH: A Platform for the Intelligence of Home with a Context Awareness and Ambient Intelligence Approach," Future Internet, MDPI, vol. 11(3), pages 1-21, March.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:3:p:58-:d:210478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/3/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/3/58/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoying Lin & Yuyao Yang & Feng Pan & Sijian Zhang & Fen Wang & Shuai Fan, 2019. "An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality," Future Internet, MDPI, vol. 11(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    2. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    3. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    4. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    5. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    6. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    7. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
    8. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    9. Soares, J. & Silva, M. & Sousa, T. & Vale, Z. & Morais, H., 2012. "Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization," Energy, Elsevier, vol. 42(1), pages 466-476.
    10. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    11. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    12. Juliano Camargo & Fred Spiessens & Chris Hermans, 2018. "A Network Flow Model for Price-Responsive Control of Deferrable Load Profiles," Energies, MDPI, vol. 11(3), pages 1-17, March.
    13. Pedro Faria & Zita Vale & José Baptista, 2015. "Demand Response Programs Design and Use Considering Intensive Penetration of Distributed Generation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    14. Fernando Lezama & Ricardo Faia & Pedro Faria & Zita Vale, 2020. "Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms," Energies, MDPI, vol. 13(10), pages 1-18, May.
    15. Adriano A. Santos & Filipe Pereira & António Ferreira da Silva & Nídia Caetano & Carlos Felgueiras & José Machado, 2023. "Electrification of a Remote Rural Farm with Solar Energy—Contribution to the Development of Smart Farming," Energies, MDPI, vol. 16(23), pages 1-17, November.
    16. Zhang, Yunchao & Islam, Md Monirul & Sun, Zeyi & Yang, Sijia & Dagli, Cihan & Xiong, Haoyi, 2018. "Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program," International Journal of Production Economics, Elsevier, vol. 206(C), pages 261-267.
    17. Dai, Yeming & Sun, Xilian & Qi, Yao & Leng, Mingming, 2021. "A real-time, personalized consumption-based pricing scheme for the consumptions of traditional and renewable energies," Renewable Energy, Elsevier, vol. 180(C), pages 452-466.
    18. Baratsas, Stefanos G. & Niziolek, Alexander M. & Onel, Onur & Matthews, Logan R. & Floudas, Christodoulos A. & Hallermann, Detlef R. & Sorescu, Sorin M. & Pistikopoulos, Efstratios N., 2022. "A novel quantitative forecasting framework in energy with applications in designing energy-intelligent tax policies," Applied Energy, Elsevier, vol. 305(C).
    19. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    20. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:3:p:58-:d:210478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.