IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i4p44-907d1492137.html
   My bibliography  Save this article

Forecasting Short- and Long-Term Wind Speed in Limpopo Province Using Machine Learning and Extreme Value Theory

Author

Listed:
  • Kgothatso Makubyane

    (Department of Statistics and Operations Research, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa)

  • Daniel Maposa

    (Department of Statistics and Operations Research, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa)

Abstract

This study investigates wind speed prediction using advanced machine learning techniques, comparing the performance of Vanilla long short-term memory (LSTM) and convolutional neural network (CNN) models, alongside the application of extreme value theory (EVT) using the r-largest order generalised extreme value distribution ( G E V D r ). Over the past couple of decades, the academic literature has transitioned from conventional statistical time series models to embracing EVT and machine learning algorithms for the modelling of environmental variables. This study adds value to the literature and knowledge of modelling wind speed using both EVT and machine learning. The primary aim of this study is to forecast wind speed in the Limpopo province of South Africa to showcase the dependability and potential of wind power generation. The application of CNN showcased considerable predictive accuracy compared to the Vanilla LSTM, achieving 88.66% accuracy with monthly time steps. The CNN predictions for the next five years, in m/s, were 9.91 (2024), 7.64 (2025), 7.81 (2026), 7.13 (2027), and 9.59 (2028), slightly outperforming the Vanilla LSTM, which predicted 9.43 (2024), 7.75 (2025), 7.85 (2026), 6.87 (2027), and 9.43 (2028). This highlights CNN’s superior ability to capture complex patterns in wind speed dynamics over time. Concurrently, the analysis of the G E V D r across various order statistics identified G E V D r = 2 as the optimal model, supported by its favourable evaluation metrics in terms of Akaike information criteria (AIC) and Bayesian information criteria (BIC). The 300-year return level for G E V D r = 2 was found to be 22.89 m/s, indicating a rare wind speed event. Seasonal wind speed analysis revealed distinct patterns, with winter emerging as the most efficient season for wind, featuring a median wind speed of 7.96 m/s. Future research could focus on enhancing prediction accuracy through hybrid algorithms and incorporating additional meteorological variables. To the best of our knowledge, this is the first study to successfully combine EVT and machine learning for short- and long-term wind speed forecasting, providing a novel framework for reliable wind energy planning.

Suggested Citation

  • Kgothatso Makubyane & Daniel Maposa, 2024. "Forecasting Short- and Long-Term Wind Speed in Limpopo Province Using Machine Learning and Extreme Value Theory," Forecasting, MDPI, vol. 6(4), pages 1-23, October.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:44-907:d:1492137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/4/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/4/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    2. Melina & Sukono & Herlina Napitupulu & Norizan Mohamed, 2023. "A Conceptual Model of Investment-Risk Prediction in the Stock Market Using Extreme Value Theory with Machine Learning: A Semisystematic Literature Review," Risks, MDPI, vol. 11(3), pages 1-24, March.
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    4. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    5. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    6. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    7. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    8. Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.
    9. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    10. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    11. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    12. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    13. Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
    14. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    15. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    16. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    17. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    18. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    19. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    20. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:44-907:d:1492137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.