IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i2p23-433d1408359.html
   My bibliography  Save this article

Heavy Rainfall Events in Selected Geographic Regions of Mexico, Associated with Hail Cannons

Author

Listed:
  • Victor M. Rodríguez-Moreno

    (INIFAP, National Institute for Forestry, Agriculture and Livestock Research, Experimental Field Station Pabellon, Km 32.5 Highway Aguascalientes-Zacatecas, Pabellon de Arteaga ZP 20670, Mexico)

  • Juan Estrada-Ávalos

    (INIFAP, National Institute for Forestry, Agriculture and Livestock Research, CENID RASPA, Km 6.5 Left Margin of Sacramento Cannel, Gomez Palacio ZP 35140, Mexico)

Abstract

In this article, we document the use of hail cannons in Mexico to dispel or suppress heavy rain episodes, a common practice among farmers, without scientific evidence to support its effectiveness. This study uses two rain databases: one compiled from the Global Precipitation Measurement (GPM) mission and the other generated with the implementation of the Weather Research and Forecasting (WRF) model. The aim is to explore the association between heavy rain episodes and hail cannon locations. The analysis includes two geographic features: a pair of coordinates and a 3 km radius area of influence around each hail cannon. This dimension is based on the size and distribution of the heavy rainfall events. This study analyzes four years of half-hourly rain data using the Python ecosystem environment with machine learning libraries. The results show no relationship between the operation of hail cannons and the dissipation or attenuation of heavy rainfall events. However, this study highlights that the significant differences between the GPM and WRF databases in registering heavy rain events may be attributable to their own uncertainty. Despite the unavailability of ground-based observations, the inefficiency of hail cannons in affecting the occurrence of heavy rain events is evident. Overall, this study provides scientific evidence that hail cannons are inefficient in preventing the occurrence of heavy rain episodes.

Suggested Citation

  • Victor M. Rodríguez-Moreno & Juan Estrada-Ávalos, 2024. "Heavy Rainfall Events in Selected Geographic Regions of Mexico, Associated with Hail Cannons," Forecasting, MDPI, vol. 6(2), pages 1-16, June.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:23-433:d:1408359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pardeep Pall & Tolu Aina & Dáithí A. Stone & Peter A. Stott & Toru Nozawa & Arno G. J. Hilberts & Dag Lohmann & Myles R. Allen, 2011. "Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000," Nature, Nature, vol. 470(7334), pages 382-385, February.
    2. David J. Frame & Suzanne M. Rosier & Ilan Noy & Luke J. Harrington & Trevor Carey-Smith & Sarah N. Sparrow & Dáithí A. Stone & Samuel M. Dean, 2020. "Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought," Climatic Change, Springer, vol. 162(2), pages 781-797, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas H. Douthat & Fahmida Akhter & Rachelle Sanderson & Jerrod Penn, 2023. "Stakeholder Perceptions about Incorporating Externalities and Vulnerability into Benefit–Cost Analysis Tools for Watershed Flood Risk Mitigation," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    2. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    3. Moinul Islam & Koji Kotani, 2014. "Perceptions to climatic changes and cooperative attitudes toward flood protection in Bangladesh," Working Papers EMS_2014_10, Research Institute, International University of Japan.
    4. S. Lorenz & S. Dessai & J. Paavola & P. Forster, 2015. "The communication of physical science uncertainty in European National Adaptation Strategies," Climatic Change, Springer, vol. 132(1), pages 143-155, September.
    5. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    6. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    7. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    8. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. A. Kay & R. Jones, 2012. "Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency," Climatic Change, Springer, vol. 114(2), pages 211-230, September.
    10. John McClure & Ilan Noy & Yoshi Kashima & Taciano L. Milfont, 2022. "Attributions for extreme weather events: science and the people," Climatic Change, Springer, vol. 174(3), pages 1-17, October.
    11. Christian Huggel & Dáithí Stone & Hajo Eicken & Gerrit Hansen, 2015. "Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies," Climatic Change, Springer, vol. 133(3), pages 453-467, December.
    12. -, 2015. "The Economics of Climate Change in Central America: Summary 2012," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39089, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    14. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    15. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    16. David J. Frame & Suzanne M. Rosier & Ilan Noy & Luke J. Harrington & Trevor Carey-Smith & Sarah N. Sparrow & Dáithí A. Stone & Samuel M. Dean, 2020. "Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought," Climatic Change, Springer, vol. 162(2), pages 781-797, September.
    17. Zhang, Dongna & Dai, Xingyu & Wang, Qunwei & Lau, Chi Keung Marco, 2023. "Impacts of weather conditions on the US commodity markets systemic interdependence across multi-timescales," Energy Economics, Elsevier, vol. 123(C).
    18. David Martimort & Stéphane Straub, 2016. "How To Design Infrastructure Contracts In A Warming World: A Critical Appraisal Of Public–Private Partnerships," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(1), pages 61-88, February.
    19. Elisabeth A. Lloyd & Theodore G. Shepherd, 2021. "Climate change attribution and legal contexts: evidence and the role of storylines," Climatic Change, Springer, vol. 167(3), pages 1-13, August.
    20. Chai Liang Huang & Lai Ferry Sugianto, 2024. "The scorching temperatures shock effect on firms’ performance: a global perspective," Review of Quantitative Finance and Accounting, Springer, vol. 62(4), pages 1651-1732, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:23-433:d:1408359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.