IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v3y2021i3p35-569d609430.html
   My bibliography  Save this article

Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach

Author

Listed:
  • Matteo Taroni

    (Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy)

  • Giorgio Vocalelli

    (Department of Economics and Finance, Tor Vergata University of Rome, Via Columbia 2, 00133 Rome, Italy)

  • Andrea De Polis

    (Warwick Business School, University of Warwick, Scarman Rd, Coventry CV4 7AL, UK)

Abstract

We introduce a novel approach to estimate the temporal variation of the b-value parameter of the Gutenberg–Richter law, based on the weighted likelihood approach. This methodology allows estimating the b-value based on the full history of the available data, within a data-driven setting. We test this methodology against the classical “rolling window” approach using a high-definition Italian seismic catalogue as well as a global catalogue of high magnitudes. The weighted likelihood approach outperforms competing methods, and measures the optimal amount of past information relevant to the estimation.

Suggested Citation

  • Matteo Taroni & Giorgio Vocalelli & Andrea De Polis, 2021. "Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach," Forecasting, MDPI, vol. 3(3), pages 1-9, August.
  • Handle: RePEc:gam:jforec:v:3:y:2021:i:3:p:35-569:d:609430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/3/3/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/3/3/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danijel Schorlemmer & Stefan Wiemer & Max Wyss, 2005. "Variations in earthquake-size distribution across different stress regimes," Nature, Nature, vol. 437(7058), pages 539-542, September.
    2. Laura Gulia & Stefan Wiemer, 2019. "Real-time discrimination of earthquake foreshocks and aftershocks," Nature, Nature, vol. 574(7777), pages 193-199, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Matsumoto & Yoshihisa Iio & Shinichi Sakai & Aitaro Kato, 2024. "Strength dependency of frequency–magnitude distribution in earthquakes and implications for stress state criticality," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Marcus Herrmann & Ester Piegari & Warner Marzocchi, 2022. "Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. C. Collettini & M. R. Barchi & N. Paola & F. Trippetta & E. Tinti, 2022. "Rock and fault rheology explain differences between on fault and distributed seismicity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Matteo Picozzi & Antonio Giovanni Iaccarino, 2021. "Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network," Forecasting, MDPI, vol. 3(1), pages 1-20, January.
    5. Futoshi Yamashita & Eiichi Fukuyama & Shiqing Xu & Hironori Kawakata & Kazuo Mizoguchi & Shigeru Takizawa, 2021. "Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. F. A. Nava & V. H. Márquez-Ramírez & F. R. Zúñiga & C. Lomnitz, 2017. "Gutenberg–Richter b-value determination and large-magnitudes sampling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 1-11, May.
    7. Huiling Zhou & Hejun Su & Hui Zhang & Chenhua Li, 2017. "Correlations between soil gas and seismic activity in the Generalized Haiyuan Fault Zone, north-central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 763-776, January.
    8. A. Singh & Indrajit Roy & Santosh Kumar & J. Kayal, 2015. "Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 33-49, May.
    9. Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
    10. J. L. Amaro-Mellado & A. Morales-Esteban & F. Martínez-Álvarez, 2018. "Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 739-758, September.
    11. Biton, Dionessa C. & Tarun, Anjali B. & Batac, Rene C., 2020. "Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Saman Yaghmaei-Sabegh & Gholamreza Ostadi-Asl, 2022. "Bayesian estimation of b-value in Gutenberg–Richter relationship: a sample size reduction approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1783-1797, February.
    13. Mendy Bengoubou-Valérius & Dominique Gibert, 2013. "Bootstrap determination of the reliability of b-values: an assessment of statistical estimators with synthetic magnitude series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 443-459, January.
    14. Pastén, Denisse & Pavez-Orrego, Claudia, 2023. "Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Daolong Chen & Changgen Xia & Huini Liu & Xiling Liu & Kun Du, 2022. "Research on b Value Estimation Based on Apparent Amplitude-Frequency Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    16. Kalpna Gahalaut & Rajesh Rekapalli, 2022. "On the enhanced post-impoundment seismicity in the Three Gorges Reservoir region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1697-1712, September.
    17. Elio Roca-Flores & Gerardo G. Naumis, 2021. "Assessing statistical hurricane risks: nonlinear regression and time-window analysis of North Atlantic annual accumulated cyclonic energy rank profile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2455-2465, September.
    18. Shuo Zheng & Kai Qin & Lixin Wu & Yanfei An & Qifeng Yin & Chunkit Lai, 2020. "Hydrothermal anomalies of the Earth's surface and crustal seismicity related to Ms8.0 Wenchuan EQ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2097-2114, December.
    19. M. Hamdache & J. A. Peláez & A. Kijko & A. Smit, 2017. "Energetic and spatial characterization of seismicity in the Algeria–Morocco region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 273-293, April.
    20. Bahruz Ahadov & Serkan Ozturk, 2022. "Spatial variations of fundamental seismotectonic parameters for the earthquake occurrences in the Eastern Mediterranean and Caucasus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2177-2192, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:3:y:2021:i:3:p:35-569:d:609430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.