A Generalized Flow for B2B Sales Predictive Modeling: An Azure Machine-Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Davis, Donna F. & Mentzer, John T., 2007. "Organizational factors in sales forecasting management," International Journal of Forecasting, Elsevier, vol. 23(3), pages 475-495.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sonia Leva, 2021. "Editorial for Special Issue: “Feature Papers of Forecasting”," Forecasting, MDPI, vol. 3(1), pages 1-3, February.
- Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
- Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
- Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
- Lackes, Richard & Siepermann, Markus & Vetter, Georg, 2020. "What drives decision makers to follow or ignore forecasting tools - A game based analysis," Journal of Business Research, Elsevier, vol. 106(C), pages 315-322.
- Gang Cheng & Sicong Wang & Yuhong Yang, 2015. "Forecast Combination under Heavy-Tailed Errors," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
- Salim Lahmiri, 2020. "A predictive system integrating intrinsic mode functions, artificial neural networks, and genetic algorithms for forecasting S&P500 intra‐day data," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(2), pages 55-65, April.
- Osman Gulseven, 2016. "Forecasting Population and Demographic Composition of Kuwait Until 2030," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1429-1435.
- Jackson, Karen & Magkonis, Georgios, 2024. "Exchange rate predictability: Fact or fiction?," Journal of International Money and Finance, Elsevier, vol. 142(C).
- Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
- Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
- Ca’ Zorzi, Michele & Rubaszek, Michał, 2023. "How many fundamentals should we include in the behavioral equilibrium exchange rate model?," Economic Modelling, Elsevier, vol. 118(C).
- Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
- López Menéndez, Ana Jesús & Pérez Suárez, Rigoberto, 2017. "Forecasting Performance and Information Measures. Revisiting the M-Competition /Evaluación de Predicciones y Medidas de Información. Reexamen de la M-Competición," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 299-314, Mayo.
- Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
- Caldarulo, Mattia & Mossberger, Karen & Howell, Anthony, 2023. "Community-wide broadband adoption and student academic achievement," Telecommunications Policy, Elsevier, vol. 47(1).
- Warwick Smith & Anca M. Hanea & Mark A. Burgman, 2022. "Can Groups Improve Expert Economic and Financial Forecasts?," Forecasting, MDPI, vol. 4(3), pages 1-18, August.
- Sohrabpour, Vahid & Oghazi, Pejvak & Toorajipour, Reza & Nazarpour, Ali, 2021. "Export sales forecasting using artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
- Ossi Ylijoki, 2018. "Guidelines for assessing the value of a predictive algorithm: a case study," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(1), pages 19-26, March.
- Konstantinos Nikolopoulos & Waleed S. Alghassab & Konstantia Litsiou & Stelios Sapountzis, 2019. "Long-Term Economic Forecasting with Structured Analogies and Interaction Groups," Working Papers 19018, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
- Gardner, Everette S., 2015. "Conservative forecasting with the damped trend," Journal of Business Research, Elsevier, vol. 68(8), pages 1739-1741.
- Soyer, Emre & Hogarth, Robin M., 2015. "The golden rule of forecasting: Objections, refinements, and enhancements," Journal of Business Research, Elsevier, vol. 68(8), pages 1702-1704.
More about this item
Keywords
costumer relation management; business to business sales prediction; machine learning; predictive modeling; microsoft azure machine-learning service;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:15-283:d:395634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.