IDEAS home Printed from https://ideas.repec.org/a/gam/jfinte/v1y2022i4p23-317d931776.html
   My bibliography  Save this article

Non-Fungible Tokens (NFTs) and Cryptocurrencies: Efficiency and Comovements

Author

Listed:
  • Éder Pereira

    (Instituto Federal do Maranhão, Campus Bacabal, São Luís 65075-441, MA, Brazil)

  • Paulo Ferreira

    (VALORIZA—Research Center for Endogenous Resource Valorization, 7300-555 Portalegre, Portugal
    Department of Economic Sciences and Organizations, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
    Center for Advanced Studies in Management and Economics, Instituto de Investigação e Formação Avançada, Universidade de Évora, Largo dos Colegiais 2, 7002-504 Évora, Portugal)

  • Derick Quintino

    (Independent Researcher, Nova Odessa 13380-009, SP, Brazil)

Abstract

Non-fungible tokens (NFTs) are a type of digital record of ownership used in a unique way: ensuring authenticity and uniqueness. Due to these characteristics, NFTs have been used in several markets: games, arts, and sports, among others. In 2020, the volume of negotiations of the NFTs was about USD 200 million. Despite the strong interest of economic agents in operating with NFTs, there are still gaps in the literature, regarding their dynamics and price interrelation with other potentially related assets, which deserve to be studied. In this sense, the main purpose in this paper is to analyze the cross-correlation between NFTs and larger cryptocurrencies. To this end, our methodological approach is based on a Detrended Cross-Correlation Analysis correlation coefficient, with a sliding windows approach. Our main finding is that the cross-correlations are not significant, except for a few cryptocurrencies, with weak significance at some moments of time. We also carried out an analysis of the long-term memory of NFTs, which demonstrated the antipersistence of these assets, with results seemingly corroborating the market inefficiency hypothesis. Our results are particularly important for different classes of investors, due to the analysis on different time scales.

Suggested Citation

  • Éder Pereira & Paulo Ferreira & Derick Quintino, 2022. "Non-Fungible Tokens (NFTs) and Cryptocurrencies: Efficiency and Comovements," FinTech, MDPI, vol. 1(4), pages 1-8, October.
  • Handle: RePEc:gam:jfinte:v:1:y:2022:i:4:p:23-317:d:931776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2674-1032/1/4/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2674-1032/1/4/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anton Miglo, 2022. "Theories of Crowdfunding and Token Issues: A Review," JRFM, MDPI, vol. 15(5), pages 1-28, May.
    2. Ferreira, Paulo & Kristoufek, Ladislav & Pereira, Eder Johnson de Area Leão, 2020. "DCCA and DMCA correlations of cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
    4. Lennart Ante, 2022. "The Non-Fungible Token (NFT) Market and Its Relationship with Bitcoin and Ethereum," FinTech, MDPI, vol. 1(3), pages 1-9, June.
    5. Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
    6. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    7. Wang, Gang-Jin & Xie, Chi & Lin, Min & Stanley, H. Eugene, 2017. "Stock market contagion during the global financial crisis: A multiscale approach," Finance Research Letters, Elsevier, vol. 22(C), pages 163-168.
    8. Okorie, David Iheke & Lin, Boqiang, 2021. "Stock markets and the COVID-19 fractal contagion effects," Finance Research Letters, Elsevier, vol. 38(C).
    9. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    10. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    11. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    12. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    13. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    14. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    15. Hussain, Muntazir & Zebende, Gilney Figueira & Bashir, Usman & Donghong, Ding, 2017. "Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 338-346.
    16. Hong Bao & David Roubaud, 2022. "Non-Fungible Token: A Systematic Review and Research Agenda," JRFM, MDPI, vol. 15(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onur Özdemir & Anoop S. Kumar, 2024. "Dynamic Efficiency and Herd Behavior During Pre- and Post-COVID-19 in the NFT Market: Evidence from Multifractal Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1255-1279, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Paulo Ferreira & Luís Carlos Loures, 2020. "An Econophysics Study of the S&P Global Clean Energy Index," Sustainability, MDPI, vol. 12(2), pages 1-9, January.
    3. Ferreira, Paulo & Kristoufek, Ladislav & Pereira, Eder Johnson de Area Leão, 2020. "DCCA and DMCA correlations of cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    5. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    6. Ferreira, Paulo & Loures, Luís & Nunes, José & Brito, Paulo, 2018. "Are renewable energy stocks a possibility to diversify portfolios considering an environmentally friendly approach? The view of DCCA correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 675-681.
    7. Thiago B. Murari & Aloisio S. Nascimento Filho & Eder J.A.L. Pereira & Paulo Ferreira & Sergio Pitombo & Hernane B.B. Pereira & Alex A.B. Santos & Marcelo A. Moret, 2019. "Comparative Analysis between Hydrous Ethanol and Gasoline C Pricing in Brazilian Retail Market," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    8. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2021. "Cryptocurrency Market Consolidation in 2020--2021," Papers 2112.06552, arXiv.org.
    9. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    10. Nascimento Filho, A.S. & Pereira, E.J.A.L. & Ferreira, Paulo & Murari, T.B. & Moret, M.A., 2018. "Cross-correlation analysis on Brazilian gasoline retail market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 550-557.
    11. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    12. Guedes, E.F. & Ferreira, Paulo & Dionísio, Andreia & Zebende, G.F., 2019. "An econophysics approach to study the effect of BREXIT referendum on European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1175-1182.
    13. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    14. Faheem Aslam & Paulo Ferreira & Haider Ali & Sumera Kauser, 2022. "Herding behavior during the Covid-19 pandemic: a comparison between Asian and European stock markets based on intraday multifractality," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(2), pages 333-359, June.
    15. Kilic, Emre & Yavuz, Ersin & Pazarci, Sevket & Kar, Asim, 2023. "Analyzing the efficient market hypothesis with asymmetric persistence in cryptocurrencies: Insights from the Fourier non-linear quantile unit root approach," Finance Research Letters, Elsevier, vol. 58(PC).
    16. Hu, Yang & Valera, Harold Glenn A. & Oxley, Les, 2019. "Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework," Finance Research Letters, Elsevier, vol. 31(C), pages 138-145.
    17. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    18. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    19. Rolando Rubilar-Torrealba & Karime Chahuán-Jiménez & Hanns de la Fuente-Mella, 2023. "A Stochastic Analysis of the Effect of Trading Parameters on the Stability of the Financial Markets Using a Bayesian Approach," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    20. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:1:y:2022:i:4:p:23-317:d:931776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.