IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p118-d64143.html
   My bibliography  Save this article

Structural Reliability of Plain Bearings for Wave Energy Converter Applications

Author

Listed:
  • Simon Ambühl

    (Department of Civil Engineering, Aalborg University, Sofiendalsvej 11, Aalborg SV 9200, Denmark)

  • Morten Kramer

    (Department of Civil Engineering, Aalborg University, Sofiendalsvej 11, Aalborg SV 9200, Denmark
    Wave Star A/S, Park Allé, Brøndby 2605, Denmark)

  • John Dalsgaard Sørensen

    (Department of Civil Engineering, Aalborg University, Sofiendalsvej 11, Aalborg SV 9200, Denmark)

Abstract

The levelized cost of energy (LCOE) from wave energy converters (WECs) needs to be decreased in order to be able to become competitive with other renewable electricity sources. Probabilistic reliability methods can be used to optimize the structure of WECs. Optimization is often performed for critical structural components, like welded details, bolts or bearings. This paper considers reliability studies with a focus on plain bearings available from stock for the Wavestar device, which exists at the prototype level. The Wavestar device is a point absorber WEC. The plan is to mount a new power take-off (PTO) system consisting of a discrete displacement cylinder (DDC), which will allow different hydraulic cycles to operate at constant pressure levels. This setup increases the conversion efficiency, as well as decouples the electricity production from the pressure variations within the hydraulic cycle when waves are passing. The new PTO system leads to different load characteristics at the floater itself compared to the actual setup where the turbine/generator is directly coupled to the fluctuating hydraulic pressure within the PTO system. This paper calculates the structural reliability of the different available plain bearings planned to be mounted at the new PTO system based on a probabilistic approach, and the paper gives suggestions for fulfilling the minimal target reliability levels. The considered failure mode in this paper is the brittle fatigue failure of plain bearings. The performed sensitivity analysis shows that parameters defining the initial crack size have a big impact on the resulting reliability of the plain bearing.

Suggested Citation

  • Simon Ambühl & Morten Kramer & John Dalsgaard Sørensen, 2016. "Structural Reliability of Plain Bearings for Wave Energy Converter Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:118-:d:64143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
    2. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pau Mercadé Ruiz & Francesco Ferri & Jens Peter Kofoed, 2017. "Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool," Sustainability, MDPI, vol. 9(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    2. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    3. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    4. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    5. Dhakal, Sagar & Timilsina, Ashesh B. & Dhakal, Rabin & Fuyal, Dinesh & Bajracharya, Tri R. & Pandit, Hari P. & Amatya, Nagendra & Nakarmi, Amrit M., 2015. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 662-669.
    6. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    7. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    8. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Coiro, Domenico P. & Troise, Giancarlo & Calise, Giuseppe & Bizzarrini, Nadia, 2016. "Wave energy conversion through a point pivoted absorber: Numerical and experimental tests on a scaled model," Renewable Energy, Elsevier, vol. 87(P1), pages 317-325.
    10. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    11. Domenech, John & Eveleigh, Timothy & Tanju, Bereket, 2018. "Marine Hydrokinetic (MHK) systems: Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 723-730.
    12. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    13. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    14. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    15. Yang, Shaohui & He, Hongzhou & Chen, Hu & Wang, Yongqing & Li, Hui & Zheng, Songgen, 2019. "Experimental study on the performance of a floating array-point-raft wave energy converter under random wave conditions," Renewable Energy, Elsevier, vol. 139(C), pages 538-550.
    16. Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
    17. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    18. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2020. "Experimental analysis of wave energy converters concentrically attached on a floating offshore platform," Renewable Energy, Elsevier, vol. 152(C), pages 1171-1185.
    19. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    20. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:118-:d:64143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.