IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i1p52-d62413.html
   My bibliography  Save this article

Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18,650 Battery Cells

Author

Listed:
  • James Michael Hooper

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • James Marco

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • Gael Henri Chouchelamane

    (Jaguar Land Rover, Banbury Road, Warwick, Coventry CV35 0XJ, UK)

  • Christopher Lyness

    (Jaguar Land Rover, Banbury Road, Warwick, Coventry CV35 0XJ, UK)

Abstract

Electric vehicle (EV) manufacturers are employing cylindrical format cells in the construction of the vehicles’ battery systems. There is evidence to suggest that both the academic and industrial communities have evaluated cell degradation due to vibration and other forms of mechanical loading. The primary motivation is often the need to satisfy the minimum requirements for safety certification. However, there is limited research that quantifies the durability of the battery and in particular, how the cells will be affected by vibration that is representative of a typical automotive service life (e.g., 100,000 miles). This paper presents a study to determine the durability of commercially available 18,650 cells and quantifies both the electrical and mechanical vibration-induced degradation through measuring changes in cell capacity, impedance and natural frequency. The impact of the cell state of charge (SOC) and in-pack orientation is also evaluated. Experimental results are presented which clearly show that the performance of 18,650 cells can be affected by vibration profiles which are representative of a typical vehicle life. Consequently, it is recommended that EV manufacturers undertake vibration testing, as part of their technology selection and development activities to enhance the quality of EVs and to minimize the risk of in-service warranty claims.

Suggested Citation

  • James Michael Hooper & James Marco & Gael Henri Chouchelamane & Christopher Lyness, 2016. "Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18,650 Battery Cells," Energies, MDPI, vol. 9(1), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:52-:d:62413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/52/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Limhi Somerville & James Michael Hooper & James Marco & Andrew McGordon & Chris Lyness & Marc Walker & Paul Jennings, 2017. "Impact of Vibration on the Surface Film of Lithium-Ion Cells," Energies, MDPI, vol. 10(6), pages 1-12, May.
    2. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    3. James Michael Hooper & James Marco & Gael Henri Chouchelamane & Christopher Lyness & James Taylor, 2016. "Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-18, April.
    4. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    5. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.
    6. Yunfeng Jiang & Xin Zhao & Amir Valibeygi & Raymond A. De Callafon, 2016. "Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery," Energies, MDPI, vol. 9(8), pages 1-17, July.
    7. Hartmut Popp & Gregor Glanz & Karoline Alten & Irina Gocheva & Wernfried Berghold & Alexander Bergmann, 2018. "Mechanical Frequency Response Analysis of Lithium-Ion Batteries to Disclose Operational Parameters," Energies, MDPI, vol. 11(3), pages 1-13, March.
    8. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    9. Thomas Bruen & James Michael Hooper & James Marco & Miguel Gama & Gael Henri Chouchelamane, 2016. "Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-20, April.
    10. Maria Cortada-Torbellino & Abdelali El Aroudi & Hugo Valderrama-Blavi, 2023. "Outlook of Lithium-Ion Battery Regulations and Procedures to Improve Cell Degradation Detection and Other Alternatives," Energies, MDPI, vol. 16(5), pages 1-13, March.
    11. Lijun Zhang & Zhongqiang Mu & Xiangyu Gao, 2018. "Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries under Conditions of Temperature and Vibration," Energies, MDPI, vol. 11(10), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:52-:d:62413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.