IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p741-d99603.html
   My bibliography  Save this article

Impact of Vibration on the Surface Film of Lithium-Ion Cells

Author

Listed:
  • Limhi Somerville

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • James Michael Hooper

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • James Marco

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • Andrew McGordon

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • Chris Lyness

    (Jaguar Land Rover, Banbury Road, Warwick CV35 0XJ, UK)

  • Marc Walker

    (Department of Physics, University of Warwick, Coventry CV4 7AL, UK)

  • Paul Jennings

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

Abstract

Cylindrical 18650-type lithium-ion cells are being utilized more often for automotive applications. This introduces error in calculating expected lifetime due to varied usage conditions accelerating or reducing material damage. One such usage condition is vibration, which has been shown to impact the electrical performance over extended periods. Within this study X-ray photoelectron spectroscopy (XPS) has been performed on nickel manganese cobalt (NMC) cells subjected to vibration. This study found that vibration causes the removal of the selectively-formed surface film created during a cell’s first cycles and replaces it with the surface film from electrolyte decomposition. The surface films formed by vibration are composed of much higher concentrations of organic electrolyte decomposition products than the film from the control cell. The impact of this chemical mechanism is an increased level of cell degradation. This is exhibited in increased capacity fade and cell impedance. This is the first study presented within the academic literature which has identified an electro-mechanical mechanism responsible for the performance degradation in lithium-ion cells from vibration.

Suggested Citation

  • Limhi Somerville & James Michael Hooper & James Marco & Andrew McGordon & Chris Lyness & Marc Walker & Paul Jennings, 2017. "Impact of Vibration on the Surface Film of Lithium-Ion Cells," Energies, MDPI, vol. 10(6), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:741-:d:99603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Michael Hooper & James Marco & Gael Henri Chouchelamane & Christopher Lyness & James Taylor, 2016. "Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-18, April.
    2. James Michael Hooper & James Marco & Gael Henri Chouchelamane & Christopher Lyness, 2016. "Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18,650 Battery Cells," Energies, MDPI, vol. 9(1), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartmut Popp & Gregor Glanz & Karoline Alten & Irina Gocheva & Wernfried Berghold & Alexander Bergmann, 2018. "Mechanical Frequency Response Analysis of Lithium-Ion Batteries to Disclose Operational Parameters," Energies, MDPI, vol. 11(3), pages 1-13, March.
    2. Pastor-Fernández, Carlos & Yu, Tung Fai & Widanage, W. Dhammika & Marco, James, 2019. "Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 138-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Cortada-Torbellino & Abdelali El Aroudi & Hugo Valderrama-Blavi, 2023. "Outlook of Lithium-Ion Battery Regulations and Procedures to Improve Cell Degradation Detection and Other Alternatives," Energies, MDPI, vol. 16(5), pages 1-13, March.
    2. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    3. Hartmut Popp & Gregor Glanz & Karoline Alten & Irina Gocheva & Wernfried Berghold & Alexander Bergmann, 2018. "Mechanical Frequency Response Analysis of Lithium-Ion Batteries to Disclose Operational Parameters," Energies, MDPI, vol. 11(3), pages 1-13, March.
    4. Lijun Zhang & Zhongqiang Mu & Xiangyu Gao, 2018. "Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries under Conditions of Temperature and Vibration," Energies, MDPI, vol. 11(10), pages 1-27, October.
    5. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    6. James Michael Hooper & James Marco & Gael Henri Chouchelamane & Christopher Lyness & James Taylor, 2016. "Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-18, April.
    7. Ivana Semanjski & Sidharta Gautama, 2016. "Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices," Energies, MDPI, vol. 9(12), pages 1-17, December.
    8. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    9. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.
    10. Yunfeng Jiang & Xin Zhao & Amir Valibeygi & Raymond A. De Callafon, 2016. "Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery," Energies, MDPI, vol. 9(8), pages 1-17, July.
    11. Thomas Bruen & James Michael Hooper & James Marco & Miguel Gama & Gael Henri Chouchelamane, 2016. "Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:741-:d:99603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.