IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p876-d81430.html
   My bibliography  Save this article

Lumped Parameters Model of a Crescent Pump

Author

Listed:
  • Massimo Rundo

    (Dipartimento Energia, Politecnico di Torino, 10129 Turin, Italy)

  • Alessandro Corvaglia

    (Dipartimento Energia, Politecnico di Torino, 10129 Turin, Italy)

Abstract

This paper presents the lumped parameters model of an internal gear crescent pump with relief valve, able to estimate the steady-state flow-pressure characteristic and the pressure ripple. The approach is based on the identification of three variable control volumes regardless of the number of gear teeth. The model has been implemented in the commercial environment LMS Amesim with the development of customized components. Specific attention has been paid to the leakage passageways, some of them affected by the deformation of the cover plate under the action of the delivery pressure. The paper reports the finite element method analysis of the cover for the evaluation of the deflection and the validation through a contactless displacement transducer. Another aspect described in this study is represented by the computational fluid dynamics analysis of the relief valve, whose results have been used for tuning the lumped parameters model. Finally, the validation of the entire model of the pump is presented in terms of steady-state flow rate and of pressure oscillations.

Suggested Citation

  • Massimo Rundo & Alessandro Corvaglia, 2016. "Lumped Parameters Model of a Crescent Pump," Energies, MDPI, vol. 9(11), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:876-:d:81430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/876/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Zardin & Massimo Borghi & Francesco Gherardini & Nicholas Zanasi, 2018. "Modelling and Simulation of a Hydrostatic Steering System for Agricultural Tractors," Energies, MDPI, vol. 11(1), pages 1-20, January.
    2. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    3. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.
    4. Massimo Rundo, 2017. "Models for Flow Rate Simulation in Gear Pumps: A Review," Energies, MDPI, vol. 10(9), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:876-:d:81430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.