IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p230-d127593.html
   My bibliography  Save this article

Modelling and Simulation of a Hydrostatic Steering System for Agricultural Tractors

Author

Listed:
  • Barbara Zardin

    (Engineering Department Enzo Ferrari, University of Modena and Reggio Emilia, Via P. Allegri 10, 41124 Modena, Italy)

  • Massimo Borghi

    (Engineering Department Enzo Ferrari, University of Modena and Reggio Emilia, Via P. Allegri 10, 41124 Modena, Italy)

  • Francesco Gherardini

    (Engineering Department Enzo Ferrari, University of Modena and Reggio Emilia, Via P. Allegri 10, 41124 Modena, Italy)

  • Nicholas Zanasi

    (CNH Industrial, San Matteo, Viale delle Nazioni 55, 41100 Modena, Italy)

Abstract

The steering system of a vehicle impacts on the vehicle performance, safety and on the driver’s comfort. Moreover, in off-road vehicles using hydrostatic steering systems, the energy dissipation also becomes a critical issue. These aspects push and motivate innovation, research and analysis in the field of agricultural tractors. This paper proposes the modelling and analysis of a hydrostatic steering system for an agricultural tractor to calculate the performance of the system and determine the influence of its main design parameters. The focus here is on the driver’s steering feel, which can improve the driver’s behavior reducing unnecessary steering corrections during the working conditions. The hydrostatic steering system is quite complex and involves a hydraulic circuit and a mechanical mechanism to transmit the steering to the vehicle tires. The detailed lumped parameters model here proposed allows to simulate the dynamic behavior of the steering system and to both enhance the understanding of the system and to improve the design through parameters sensitivity analysis.

Suggested Citation

  • Barbara Zardin & Massimo Borghi & Francesco Gherardini & Nicholas Zanasi, 2018. "Modelling and Simulation of a Hydrostatic Steering System for Agricultural Tractors," Energies, MDPI, vol. 11(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:230-:d:127593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Rundo & Alessandro Corvaglia, 2016. "Lumped Parameters Model of a Crescent Pump," Energies, MDPI, vol. 9(11), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Javier Gamez-Montero & Esteve Codina & Robert Castilla, 2019. "A Review of Gerotor Technology in Hydraulic Machines," Energies, MDPI, vol. 12(12), pages 1-44, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    2. Massimo Rundo, 2017. "Models for Flow Rate Simulation in Gear Pumps: A Review," Energies, MDPI, vol. 10(9), pages 1-32, August.
    3. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:230-:d:127593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.