IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p856-d81176.html
   My bibliography  Save this article

Determination of Optimized Parameters for the Flexible Operation of a Biomass-Fueled, Microscale Externally Fired Gas Turbine (EFGT)

Author

Listed:
  • Mathhar Bdour

    (Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
    School of Natural Resources Engineering and Management, Department of Energy Engineering, German-Jordanian University, PO Box 35247, Amman 11180, Jordan)

  • Mohammad Al-Addous

    (School of Natural Resources Engineering and Management, Department of Energy Engineering, German-Jordanian University, PO Box 35247, Amman 11180, Jordan)

  • Michael Nelles

    (Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
    Faculty of Agricultural and Environmental Sciences, Department Waste Management and Material Flow, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany)

  • Andreas Ortwein

    (Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany)

Abstract

Biomass as a source of renewable energy is a promising solution for current problems in energy supply. Olive waste is considered as an interesting option, especially for Mediterranean countries. Within this paper, a microscale externally fired gas turbine (EFGT) technology is presented as a decentralized power plant, within the range of 15 kW th , based on olive residues. It was modeled by Aspen Plus 8.6 software to provide a sufficient technical study for such a plant. Optimized parameters for pressure ratio and turbine air-mass flow have been mapped for several loads to provide information for process control. For all cases, mechanical output, efficiency curves, and back-work ratio have been calculated. Using this information, typical plant sizes and an example of power production are discussed. Additionally, achievable energy production from olive waste is estimated on the basis of this data. The results of this study show that such a plant has an electrical efficiency of 5%–17%. This variation is due to the examination being performed under several combustion temperatures, actual load, heat exchanger temperatures, and heat transfer efficiency. A cost estimation of the discussed system showed an estimated capital cost of 33,800 to 65,300 € for a 15 kW th system.

Suggested Citation

  • Mathhar Bdour & Mohammad Al-Addous & Michael Nelles & Andreas Ortwein, 2016. "Determination of Optimized Parameters for the Flexible Operation of a Biomass-Fueled, Microscale Externally Fired Gas Turbine (EFGT)," Energies, MDPI, vol. 9(10), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:856-:d:81176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Hari Arti Khalsa & Frank Döhling & Florian Berger, 2016. "Foliage and Grass as Fuel Pellets–Small Scale Combustion of Washed and Mechanically Leached Biomass," Energies, MDPI, vol. 9(5), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.
    2. Frank Hensgen & Michael Wachendorf, 2016. "The Effect of the Invasive Plant Species Lupinus polyphyllus Lindl. on Energy Recovery Parameters of Semi-Natural Grassland Biomass," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    3. Meike Nitsche & Nodirjon Nurmatov & Frank Hensgen & Michael Wachendorf, 2017. "Heavy Metals and Polycyclic Aromatic Hydrocarbons in Urban Leaf Litter Designated for Combustion," Energies, MDPI, vol. 10(3), pages 1-14, March.
    4. Nodirjon Nurmatov & Daniel Armando Leon Gomez & Frank Hensgen & Lutz Bühle & Michael Wachendorf, 2016. "High-Quality Solid Fuel Production from Leaf Litter of Urban Street Trees," Sustainability, MDPI, vol. 8(12), pages 1-13, November.
    5. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    6. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    7. Sebastian Paczkowski & Victoria Knappe & Marta Paczkowska & Luis Alonzo Diaz Robles & Dirk Jaeger & Stefan Pelz, 2021. "Low-Temperature Hydrothermal Treatment (HTT) Improves the Combustion Properties of Short-Rotation Coppice Willow Wood by Reducing Emission Precursors," Energies, MDPI, vol. 14(24), pages 1-13, December.
    8. Ben Joseph & Frank Hensgen & Lutz Bühle & Michael Wachendorf, 2018. "Solid Fuel Production from Semi-Natural Grassland Biomass—Results from a Commercial-Scale IFBB Plant," Energies, MDPI, vol. 11(11), pages 1-17, November.
    9. Meike Nitsche & Frank Hensgen & Michael Wachendorf, 2017. "Using Grass Cuttings from Sports Fields for Anaerobic Digestion and Combustion," Energies, MDPI, vol. 10(3), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:856-:d:81176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.