IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p845-d80949.html
   My bibliography  Save this article

Cost Analysis Method for Estimating Dynamic Reserve Considering Uncertainties in Supply and Demand

Author

Listed:
  • Kyung-bin Kwon

    (Electrical Engineering, Korea Military Academy (KMA), Seoul 01850, Korea)

  • Hyeongon Park

    (Department of Statistics Institute of Engineering Research, Seoul National University, Seoul 08826, Korea)

  • Jae-Kun Lyu

    (Korean Electric Power Corporation (KEPCO), Naju 58217, Korea)

  • Jong-Keun Park

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea)

Abstract

The use of appropriate hourly reserve margins can maintain power system security by balancing supply and demand in the presence of errors in the forecast demand, generation outages, or errors in the forecast of wind power generation. Because the cost of unit commitment increases with larger reserve margins, cost analysis to determine the most economical reserve margin is an important issue in power system operation. Here, we define the “short-term reliability of balance” and describe a method to determine the reserve margin based on the short-term reliability of balance. We describe a case study, in which we calculate the reserve margin using this method with various standards of short-term reliability of balance. A cost analysis is then performed to determine the most economic standard, and a comparison between our method and a conventional method is carried out. The results show that our method with an economic short-term reliability of balance enables more reliable and efficient operation of the power system. Moreover, with an hourly reserve margin, we show that an increase in wind power generation can result in a significant decrease in the operating cost, which makes wind power generation economically viable.

Suggested Citation

  • Kyung-bin Kwon & Hyeongon Park & Jae-Kun Lyu & Jong-Keun Park, 2016. "Cost Analysis Method for Estimating Dynamic Reserve Considering Uncertainties in Supply and Demand," Energies, MDPI, vol. 9(10), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:845-:d:80949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgopoulou, Chariklia A. & Giannakoglou, Kyriakos C., 2010. "Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages," Applied Energy, Elsevier, vol. 87(5), pages 1782-1792, May.
    2. Saez-Gallego, Javier & Morales, Juan M. & Madsen, Henrik & Jónsson, Tryggvi, 2014. "Determining reserve requirements in DK1 area of Nord Pool using a probabilistic approach," Energy, Elsevier, vol. 74(C), pages 682-693.
    3. Hyeon-Gon Park & Jae-Kun Lyu & YongCheol Kang & Jong-Keun Park, 2014. "Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power," Energies, MDPI, vol. 7(7), pages 1-19, July.
    4. Wei Zhou & Hui Sun & Yu Peng, 2010. "Risk Reserve Constrained Economic Dispatch Model with Wind Power Penetration," Energies, MDPI, vol. 3(12), pages 1-15, December.
    5. Jianhua Chen & Wenchuan Wu & Boming Zhang & Bin Wang & Qinglai Guo, 2013. "A Spinning Reserve Allocation Method for Power Generation Dispatch Accommodating Large-Scale Wind Power Integration," Energies, MDPI, vol. 6(10), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Kyung-bin & Kim, Dam, 2020. "Enhanced method for considering energy storage systems as ancillary service resources in stochastic unit commitment," Energy, Elsevier, vol. 213(C).
    2. Gang Wang & Dahai You & Zhe Zhang & Li Dai & Qi Zou & Hengwei Liu, 2018. "Network-Constrained Unit Commitment Based on Reserve Models Fully Considering the Stochastic Characteristics of Wind Power," Energies, MDPI, vol. 11(2), pages 1-20, February.
    3. Ilias G. Marneris & Pandelis N. Biskas & Anastasios G. Bakirtzis, 2017. "Stochastic and Deterministic Unit Commitment Considering Uncertainty and Variability Reserves for High Renewable Integration," Energies, MDPI, vol. 10(1), pages 1-25, January.
    4. Rishang Long & Jianhua Zhang, 2016. "Risk Assessment Method of UHV AC/DC Power System under Serious Disasters," Energies, MDPI, vol. 10(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    2. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    3. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    4. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    5. Wushan Cheng & Haifeng Zhang, 2014. "A Dynamic Economic Dispatch Model Incorporating Wind Power Based on Chance Constrained Programming," Energies, MDPI, vol. 8(1), pages 1-24, December.
    6. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
    7. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    8. Li, Cun-bin & Li, Peng & Feng, Xia, 2014. "Analysis of wind power generation operation management risk in China," Renewable Energy, Elsevier, vol. 64(C), pages 266-275.
    9. Fotouhi Ghazvini, Mohammad Ali & Canizes, Bruno & Vale, Zita & Morais, Hugo, 2013. "Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market," Applied Energy, Elsevier, vol. 101(C), pages 667-677.
    10. Hong Zhang & Hao Sun & Qian Zhang & Guanxun Kong, 2018. "Microgrid Spinning Reserve Optimization with Improved Information Gap Decision Theory," Energies, MDPI, vol. 11(9), pages 1-17, September.
    11. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    12. Shengli Liao & Zhifu Li & Gang Li & Jiayang Wang & Xinyu Wu, 2015. "Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power," Energies, MDPI, vol. 8(11), pages 1-17, November.
    13. Zhiwei Li & Tianran Jin & Shuqiang Zhao & Jinshan Liu, 2018. "Power System Day-Ahead Unit Commitment Based on Chance-Constrained Dependent Chance Goal Programming," Energies, MDPI, vol. 11(7), pages 1-20, July.
    14. Liping Wang & Minghao Liu & Boquan Wang & Jiajie Wu & Chuangang Li, 2017. "Study on Nested-Structured Load Shedding Method of Thermal Power Stations Based on Output Fluctuations," Energies, MDPI, vol. 10(10), pages 1-16, September.
    15. Geyer, Philipp & Schlüter, Arno, 2014. "Automated metamodel generation for Design Space Exploration and decision-making – A novel method supporting performance-oriented building design and retrofitting," Applied Energy, Elsevier, vol. 119(C), pages 537-556.
    16. Xia Zhou & Wei Li & Mengya Li & Qian Chen & Chaohai Zhang & Jilai Yu, 2016. "Effect of the Coordinative Optimization of Interruptible Loads in Primary Frequency Regulation on Frequency Recovery," Energies, MDPI, vol. 9(3), pages 1-11, March.
    17. Dai Cui & Fei Xu & Weichun Ge & Pengxiang Huang & Yunhai Zhou, 2020. "A Coordinated Dispatching Model Considering Generation and Operation Reserve in Wind Power-Photovoltaic-Pumped Storage System," Energies, MDPI, vol. 13(18), pages 1-24, September.
    18. Goudarzi, Arman & Viray, Z.N.C. & Siano, Pierluigi & Swanson, Andrew G. & Coller, John V. & Kazemi, Mehdi, 2017. "A probabilistic determination of required reserve levels in an energy and reserve co-optimized electricity market with variable generation," Energy, Elsevier, vol. 130(C), pages 258-275.
    19. Xie, Min & Ji, Xiang & Hu, Xintong & Cheng, Peijun & Du, Yuxin & Liu, Mingbo, 2018. "Autonomous optimized economic dispatch of active distribution system with multi-microgrids," Energy, Elsevier, vol. 153(C), pages 479-489.
    20. Jianjian Shen & Chuntian Cheng & Jun Zhang & Jianyu Lu, 2015. "Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces," Energies, MDPI, vol. 8(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:845-:d:80949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.