IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2015i1p6-d61114.html
   My bibliography  Save this article

Heuristic Optimization of Consumer Electricity Costs Using a Generic Cost Model

Author

Listed:
  • Chris Ogwumike

    (School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA, UK)

  • Michael Short

    (School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA, UK)

  • Fathi Abugchem

    (School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA, UK)

Abstract

Many new demand response strategies are emerging for energy management in smart grids. Real-Time Energy Pricing (RTP) is one important aspect of consumer Demand Side Management (DSM), which encourages consumers to participate in load scheduling. This can help reduce peak demand and improve power system efficiency. The use of Intelligent Decision Support Systems (IDSSs) for load scheduling has become necessary in order to enable consumers to respond to the changing economic value of energy across different hours of the day. The type of scheduling problem encountered by a consumer IDSS is typically NP-hard, which warrants the search for good heuristics with efficient computational performance and ease of implementation. This paper presents an extensive evaluation of a heuristic scheduling algorithm for use in a consumer IDSS. A generic cost model for hourly pricing is utilized, which can be configured for traditional on/off peak pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and combinations thereof. The heuristic greedily schedules controllable appliances to minimize smart appliance energy costs and has a polynomial worst-case computation time. Extensive computational experiments demonstrate the effectiveness of the algorithm and the obtained results indicate the gaps between the optimal achievable costs are negligible.

Suggested Citation

  • Chris Ogwumike & Michael Short & Fathi Abugchem, 2015. "Heuristic Optimization of Consumer Electricity Costs Using a Generic Cost Model," Energies, MDPI, vol. 9(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:9:y:2015:i:1:p:6-:d:61114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myeong Jin Ko & Yong Shik Kim & Min Hee Chung & Hung Chan Jeon, 2015. "Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm," Energies, MDPI, vol. 8(4), pages 1-26, April.
    2. Zdenek Bradac & Vaclav Kaczmarczyk & Petr Fiedler, 2014. "Optimal Scheduling of Domestic Appliances via MILP," Energies, MDPI, vol. 8(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Ghulam Hafeez & Nadeem Javaid & Sohail Iqbal & Farman Ali Khan, 2018. "Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units," Energies, MDPI, vol. 11(3), pages 1-27, March.
    3. Danish Mahmood & Nadeem Javaid & Nabil Alrajeh & Zahoor Ali Khan & Umar Qasim & Imran Ahmed & Manzoor Ilahi, 2016. "Realistic Scheduling Mechanism for Smart Homes," Energies, MDPI, vol. 9(3), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    2. Garcia Marrero, Luis Enrique & Arzola Ruíz, José, 2021. "Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives," Renewable Energy, Elsevier, vol. 179(C), pages 2224-2234.
    3. Zeel Maheshwari & Rama Ramakumar, 2017. "Smart Integrated Renewable Energy Systems (SIRES): A Novel Approach for Sustainable Development," Energies, MDPI, vol. 10(8), pages 1-22, August.
    4. João Carlos de Oliveira Matias & Ricardo Santos & Antonio Abreu, 2019. "A Decision Support Approach to Provide Sustainable Solutions to the Consumer, by Using Electrical Appliances," Sustainability, MDPI, vol. 11(4), pages 1-16, February.
    5. Auza, Anna & Asadi, Ehsan & Chenari, Behrang & Gameiro da Silva, Manuel, 2024. "Review of cost objective functions in multi-objective optimisation analysis of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    7. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    8. Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2017. "Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms," Energies, MDPI, vol. 10(10), pages 1-20, October.
    9. Lee, Sangkeum & Cho, Hong-Yeon & Har, Dongsoo, 2018. "Operation optimization with jointly controlled modules powered by hybrid energy source: A case study of desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3070-3080.
    10. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2017. "Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey," Applied Energy, Elsevier, vol. 187(C), pages 575-584.
    11. Krzysztof Grygierek & Joanna Ferdyn-Grygierek, 2018. "Multi-Objective Optimization of the Envelope of Building with Natural Ventilation," Energies, MDPI, vol. 11(6), pages 1-17, May.
    12. Sheraz Aslam & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Khursheed Aurangzeb & Syed Irtaza Haider, 2017. "Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 10(12), pages 1-25, December.
    13. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    14. Roberts, Justo José & Marotta Cassula, Agnelo & Silveira, José Luz & da Costa Bortoni, Edson & Mendiburu, Andrés Z., 2018. "Robust multi-objective optimization of a renewable based hybrid power system," Applied Energy, Elsevier, vol. 223(C), pages 52-68.
    15. Awais Manzoor & Nadeem Javaid & Ibrar Ullah & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "An Intelligent Hybrid Heuristic Scheme for Smart Metering based Demand Side Management in Smart Homes," Energies, MDPI, vol. 10(9), pages 1-28, August.
    16. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    17. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    18. Janne Hirvonen & Juha Jokisalo & Juhani Heljo & Risto Kosonen, 2019. "Towards the EU Emission Targets of 2050: Cost-Effective Emission Reduction in Finnish Detached Houses," Energies, MDPI, vol. 12(22), pages 1-29, November.
    19. Somi Jung & Dongwoo Kim, 2017. "Pareto-Efficient Capacity Planning for Residential Photovoltaic Generation and Energy Storage with Demand-Side Load Management," Energies, MDPI, vol. 10(4), pages 1-20, March.
    20. Weiler, Verena & Lust, Daniel & Brennenstuhl, Marcus & Brassel, Kai-Holger & Duminil, Eric & Eicker, Ursula, 2022. "Automatic dimensioning of energy system components for building cluster simulation," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2015:i:1:p:6-:d:61114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.