IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2015i1p22-d61548.html
   My bibliography  Save this article

Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids

Author

Listed:
  • Mahesh Suresh Patil

    (Department of Mechanical Engineering, Dong-A University, Hadan 840, Saha-gu, Busan 604-714, Korea)

  • Sung Chul Kim

    (School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Korea)

  • Jae-Hyeong Seo

    (R & D Division, NTF Tech Co., Hadan 840, Saha-gu, Busan 604-714, Korea)

  • Moo-Yeon Lee

    (Department of Mechanical Engineering, Dong-A University, Hadan 840, Saha-gu, Busan 604-714, Korea)

Abstract

Nanofluids are considered a promising choice for several heat transfer applications. With the increasing awareness for energy saving and efficiency improvement in various thermal systems, including refrigeration systems, there is a growing interest in the refrigerant-based nanofluids owing to their superior thermo-physical properties. Nanorefrigerants are a class of nanofluid, which consist of suspended nanoparticles in a base refrigerant. In this paper, it is intended to include many articles on refrigeration systems that use nanorefrigerants, published in the period from 2005 to 2015. Although this is an extensive review, it could not include all the papers, and only some major research works were selected. It is believed that the dependency of thermal conductivity and other properties on temperature will make the thermal systems more efficient while operating at a high temperature. The literature reviews associated with the performance characteristics of nanorefrigerants in refrigeration systems for the last 10 years have been compiled and presented in this paper. Furthermore, recent studies related to thermo-physical properties of nanorefrigerants and nanolubricants have also been summarized and reviewed in this paper.

Suggested Citation

  • Mahesh Suresh Patil & Sung Chul Kim & Jae-Hyeong Seo & Moo-Yeon Lee, 2015. "Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids," Energies, MDPI, vol. 9(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:9:y:2015:i:1:p:22-:d:61548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/22/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/22/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    2. Saidur, R. & Kazi, S.N. & Hossain, M.S. & Rahman, M.M. & Mohammed, H.A., 2011. "A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 310-323, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B.S. Bibin & Edison Gundabattini, 2023. "Pressure Drop and Heat Transfer Characteristics of TiO 2 /R1234yf Nanorefrigerant: A Numerical Approach," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    2. Najiha, M.S. & Rahman, M.M. & Yusoff, A.R., 2016. "Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1008-1031.
    3. Shahrul, I.M. & Mahbubul, I.M. & Khaleduzzaman, S.S. & Saidur, R. & Sabri, M.F.M., 2014. "A comparative review on the specific heat of nanofluids for energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 88-98.
    4. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    5. Belman-Flores, J.M. & Barroso-Maldonado, J.M. & Rodríguez-Muñoz, A.P. & Camacho-Vázquez, G., 2015. "Enhancements in domestic refrigeration, approaching a sustainable refrigerator – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 955-968.
    6. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    7. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    8. Syahira Mansur & Anuar Ishak & Ioan Pop, 2015. "The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    9. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    10. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    11. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    12. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    13. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    14. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    16. Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    18. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    19. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    20. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2015:i:1:p:22-:d:61548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.