IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p9655-9669d55297.html
   My bibliography  Save this article

A Novel Choice Procedure of Magnetic Component Values for Phase Shifted Full Bridge Converters with a Variable Dead-Time Control Method

Author

Listed:
  • Lei Zhao

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Haoyu Li

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Yanxue Yu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    These authors contributed equally to this work.)

  • Yantian Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    These authors contributed equally to this work.)

Abstract

Magnetic components are important parts of the phase shifted full bridge (PSFB) converter. During the dead-time of switches located in the same leg, the converter can achieve zero-voltage-switching (ZVS) by using the energies stored in magnetic components to discharge or charge the output capacitances of switches. Dead-time is usually calculated under a given set of pre-defined load condition which results in that the available energies are insufficient and ZVS capability is lost at light loads. In this paper, the PSFB converter is controlled by variable dead-time method and thus full advantage can be taken of the energies stored in magnetic components. Considering that dead-time has a great effect on ZVS, the relationship between available energies and magnetic component values is formulated by analyzing the equivalent circuits during dead-time intervals. Magnetic component values are chosen based on such relationship. The proposed choice procedure can make the available energies greater than the required energies for ZVS operation over a wide range of load conditions. Moreover, the burst mode control is adopted in order to reduce the standby power loss. Experimental results coincide with the theoretical analysis. The proposed method is a simple and practical solution to extend the ZVS range.

Suggested Citation

  • Lei Zhao & Haoyu Li & Yanxue Yu & Yantian Wang, 2015. "A Novel Choice Procedure of Magnetic Component Values for Phase Shifted Full Bridge Converters with a Variable Dead-Time Control Method," Energies, MDPI, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9655-9669:d:55297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/9655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/9655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ching-Ming Lai & Ming-Ji Yang & Shih-Kun Liang, 2014. "A Zero Input Current Ripple ZVS/ZCS Boost Converter with Boundary-Mode Control," Energies, MDPI, vol. 7(10), pages 1-18, October.
    2. Lei Zhao & Haoyu Li & Yuan Liu & Zhenwei Li, 2015. "High Efficiency Variable-Frequency Full-Bridge Converter with a Load Adaptive Control Method Based on the Loss Model," Energies, MDPI, vol. 8(4), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorin Petreus & Radu Etz & Toma Patarau & Ionut Ciocan, 2020. "Comprehensive Analysis of a High-Power Density Phase-Shift Full Bridge Converter Highlighting the Effects of the Parasitic Capacitances," Energies, MDPI, vol. 13(6), pages 1-20, March.
    2. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Aiswariya Sekar & Dhanasekaran Raghavan, 2015. "Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles," Energies, MDPI, vol. 8(11), pages 1-16, November.
    3. David García Elvira & Hugo Valderrama Blaví & Àngel Cid Pastor & Luis Martínez Salamero, 2018. "Efficiency Optimization of a Variable Bus Voltage DC Microgrid," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Kornel Wolski & Piotr Grzejszczak & Marek Szymczak & Roman Barlik, 2021. "Closed-Form Formulas for Automated Design of SiC-Based Phase-Shifted Full Bridge Converters in Charger Applications," Energies, MDPI, vol. 14(17), pages 1-25, August.
    5. Manuel Escudero & Matteo-Alessandro Kutschak & David Meneses & Noel Rodriguez & Diego P. Morales, 2019. "A Practical Approach to the Design of a Highly Efficient PSFB DC-DC Converter for Server Applications," Energies, MDPI, vol. 12(19), pages 1-36, September.
    6. Lei Zhao & Haoyu Li & Yuan Liu & Zhenwei Li, 2015. "High Efficiency Variable-Frequency Full-Bridge Converter with a Load Adaptive Control Method Based on the Loss Model," Energies, MDPI, vol. 8(4), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9655-9669:d:55297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.