IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i7p7478-7501d53001.html
   My bibliography  Save this article

Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations

Author

Listed:
  • Petras Punys

    (Institute of Water Resources Engineering, Aleksandras Stulginskis University, 10 Universiteto str., Akademija, Kaunas District LT-53361, Lithuania)

  • Antanas Dumbrauskas

    (Institute of Water Resources Engineering, Aleksandras Stulginskis University, 10 Universiteto str., Akademija, Kaunas District LT-53361, Lithuania)

  • Egidijus Kasiulis

    (Institute of Water Resources Engineering, Aleksandras Stulginskis University, 10 Universiteto str., Akademija, Kaunas District LT-53361, Lithuania)

  • Gitana Vyčienė

    (Institute of Water Resources Engineering, Aleksandras Stulginskis University, 10 Universiteto str., Akademija, Kaunas District LT-53361, Lithuania)

  • Linas Šilinis

    (Institute of Water Resources Engineering, Aleksandras Stulginskis University, 10 Universiteto str., Akademija, Kaunas District LT-53361, Lithuania)

Abstract

This article discusses the environmental issues facing small hydropower plants (SHPs) operating in temperate lowland rivers of Lithuania. The research subjects are two medium head reservoir type hydro schemes considered within a context of the global fleet of SHPs in the country. This research considers general abiotic indicators (flow, level, water retention time in the reservoirs) of the stream that may affect the aquatic systems. The main idea was to test whether the hydrologic regime has been altered by small hydropower dams. The analysis of changes in abiotic indicators is a complex process, including both pre- and post-reservoir construction and post commissioning of the SHPs under operation. Downstream hydrograph (flow and stage) ramping is also an issue for operating SHPs that can result in temporary rapid changes in flow and consequently negatively impact aquatic resources. This ramping has been quantitatively evaluated. To avoid the risk of excessive flow ramping, the types of turbines available were evaluated and the most suitable types for the natural river flow regime were identified. The results of this study are to allow for new hydro schemes or upgrades to use water resources in a more sustainable way.

Suggested Citation

  • Petras Punys & Antanas Dumbrauskas & Egidijus Kasiulis & Gitana Vyčienė & Linas Šilinis, 2015. "Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations," Energies, MDPI, vol. 8(7), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7478-7501:d:53001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/7/7478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/7/7478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niu, Shilei & Insley, Margaret, 2013. "On the economics of ramping rate restrictions at hydro power plants: Balancing profitability and environmental costs," Energy Economics, Elsevier, vol. 39(C), pages 39-52.
    2. Punys, Petras & Pelikan, Bernhard, 2007. "Review of small hydropower in the new Member States and Candidate Countries in the context of the enlarged European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1321-1360, September.
    3. David A. Harpman, 1999. "Assessing the Short-Run Economic Cost of Environmental Constraints on Hydropower Operations at Glen Canyon Dam," Land Economics, University of Wisconsin Press, vol. 75(3), pages 390-401.
    4. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    2. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    3. Vincenzo Dovì & Antonella Battaglini, 2015. "Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 8(12), pages 1-8, November.
    4. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    5. Egidijus Kasiulis & Petras Punys & Algis Kvaraciejus & Antanas Dumbrauskas & Linas Jurevičius, 2020. "Small Hydropower in the Baltic States—Current Status and Potential for Future Development," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Díaz, J.I. & Millán, R. & García, D. & Guisández, I. & Wilhelmi, J.R., 2012. "Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation," Energy, Elsevier, vol. 48(1), pages 144-152.
    2. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    3. Kern, Jordan D. & Characklis, Gregory W., 2017. "Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams," Energy Economics, Elsevier, vol. 61(C), pages 340-350.
    4. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    5. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2016. "Approximate formulae for the assessment of the long-term economic impact of environmental constraints on hydropeaking," Energy, Elsevier, vol. 112(C), pages 629-641.
    6. Sample, James E. & Duncan, Niall & Ferguson, Michael & Cooksley, Susan, 2015. "Scotland׳s hydropower: Current capacity, future potential and the possible impacts of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 111-122.
    7. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    8. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    9. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    10. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    11. Ana Paula Coelho Clauberg & Renato de Mello & Flávio José Simioni & Simone Sehnem, 2021. "System for assessing the sustainability conditions of small hydro plants by fuzzy logic," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 300-317, March.
    12. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    13. Spänhoff, Bernd, 2014. "Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 518-525.
    14. Sheila M. Olmstead & Hilary Sigman, 2015. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 497-526.
    15. Asher, Manshi & Bhandari, Prakash, 2021. "Mitigation or Myth? Impacts of Hydropower Development and Compensatory Afforestation on forest ecosystems in the high Himalayas," Land Use Policy, Elsevier, vol. 100(C).
    16. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    17. Gang Li & Bao-Jian Li & Xu-Guang Yu & Chun-Tian Cheng, 2015. "Echo State Network with Bayesian Regularization for Forecasting Short-Term Power Production of Small Hydropower Plants," Energies, MDPI, vol. 8(10), pages 1-14, October.
    18. He, Xi, 2023. "Dams, cropland productivity, and economic development in China," China Economic Review, Elsevier, vol. 81(C).
    19. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    20. Kucukali, Serhat & Baris, Kemal, 2009. "Assessment of small hydropower (SHP) development in Turkey: Laws, regulations and EU policy perspective," Energy Policy, Elsevier, vol. 37(10), pages 3872-3879, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:7478-7501:d:53001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.