Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.01.077
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Wang, Huizhi, 2012. "Laminar flow-based fuel cell working under critical conditions: The effect of parasitic current," Applied Energy, Elsevier, vol. 90(1), pages 87-93.
- Henriques, T. & César, B. & Branco, P.J. Costa, 2010. "Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study," Applied Energy, Elsevier, vol. 87(4), pages 1400-1409, April.
- Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2012. "Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 95(C), pages 50-63.
- Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Wang, Huizhi, 2012. "Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects," Applied Energy, Elsevier, vol. 90(1), pages 80-86.
- Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ouyang, Tiancheng & Liu, Wenjun & Liu, Benlong & Hu, Xiaoyi & Shi, Xiaomin, 2023. "Design and optimization of a novel sinusoidal corrugated channel for microfluidic fuel cell with gas-liquid two-phase flow model," Renewable Energy, Elsevier, vol. 208(C), pages 737-750.
- Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
- Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
- Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
- Xu, Hong & Zhang, Hao & Wang, Huizhi & Leung, Dennis Y.C. & Zhang, Li & Cao, Jun & Jiao, Kui & Xuan, Jin, 2015. "Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%," Applied Energy, Elsevier, vol. 160(C), pages 930-936.
- Das, Suparna & Kumar, Piyush & Dutta, Kingshuk & Kundu, Patit Paban, 2014. "Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell," Applied Energy, Elsevier, vol. 113(C), pages 169-177.
- Chen, Binbin & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance," Applied Energy, Elsevier, vol. 185(P2), pages 1303-1308.
- Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
- Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
- Ouyang, Tiancheng & Chen, Jingxian & Liu, Wenjun & Xu, Peihang & Lu, Jie & Zhao, Zhongkai, 2022. "A comprehensive evaluation for microfluidic fuel cells from anti-vibration viewpoint using phase field theory," Renewable Energy, Elsevier, vol. 189(C), pages 676-693.
- Wang, Yifei & Leung, Dennis Y.C. & Zhang, Hao & Xuan, Jin & Wang, Huizhi, 2017. "Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell," Applied Energy, Elsevier, vol. 203(C), pages 535-548.
- Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
- Liu, Wenjun & Sun, Xiuyang & Li, Yinxuan & Tan, Xinru & Ouyang, Tiancheng, 2024. "Designing and multi-evaluation of a promising gas-emission anode for eliminating CO2 accumulation in microfluidic fuel cell," Applied Energy, Elsevier, vol. 359(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
- Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
- Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
- Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
- Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
- Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
- Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
- Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
- Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
- Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
- Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
- Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
- Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Zhou, Zihan & Qiu, Diankai & Zhai, Shuang & Peng, Linfa & Lai, Xinmin, 2020. "Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model," Applied Energy, Elsevier, vol. 277(C).
- Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).
- Qin, Yanzhou & Li, Xianguo & Jiao, Kui & Du, Qing & Yin, Yan, 2014. "Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate," Applied Energy, Elsevier, vol. 113(C), pages 116-126.
- Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
- Qiu, Diankai & Janßen, Holger & Peng, Linfa & Irmscher, Philipp & Lai, Xinmin & Lehnert, Werner, 2018. "Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression," Applied Energy, Elsevier, vol. 231(C), pages 127-137.
- Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
- Cho, Junhyun & Park, Jaeman & Oh, Hwanyeong & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2013. "Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses," Applied Energy, Elsevier, vol. 111(C), pages 300-309.
More about this item
Keywords
Microfluidic fuel cell; Concentrated fuel; Nonlinear diffusion; Fuel crossover;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1131-1137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.