IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p10818-10841d56504.html
   My bibliography  Save this article

Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

Author

Listed:
  • Rongxiang Zhang

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

  • Xiaodong Chu

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

  • Wen Zhang

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

  • Yutian Liu

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

Abstract

Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is conducted by using the Monte Carlo simulation method. A structure preserving model is applied to the multi-bus power system, in which air conditioners are aggregated at certain load buses. An inner-outer iteration scheme is adopted to solve power system dynamics. An experiment is conducted on a test air conditioner to examine the performance of the proposed decentralized control law. Simulation results on a test power system verify the effectiveness of the proposed strategy for air conditioners participating in frequency control.

Suggested Citation

  • Rongxiang Zhang & Xiaodong Chu & Wen Zhang & Yutian Liu, 2015. "Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort," Energies, MDPI, vol. 8(10), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:10818-10841:d:56504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/10818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/10818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dehghanpour, Kaveh & Afsharnia, Saeed, 2015. "Electrical demand side contribution to frequency control in power systems: a review on technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1267-1276.
    2. Pedro Faria & Zita Vale & José Baptista, 2015. "Demand Response Programs Design and Use Considering Intensive Penetration of Distributed Generation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusi Chen & Haiguang Liu & Chengquan Liu & Guangzheng Yu & Xuan Yang & Yue Zhou, 2022. "System Frequency Control Method Driven by Deep Reinforcement Learning and Customer Satisfaction for Thermostatically Controlled Load," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.
    3. Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    3. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    4. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    5. Rehman, Obaid Ur & Khan, Shahid A. & Javaid, Nadeem, 2021. "Decoupled building-to-transmission-network for frequency support in PV systems dominated grid," Renewable Energy, Elsevier, vol. 178(C), pages 930-945.
    6. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    7. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    8. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    9. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    10. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    11. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    12. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    13. Lei Zhou & Yang Li & Beibei Wang & Zhe Wang & Xiaoqing Hu, 2015. "Provision of Supplementary Load Frequency Control via Aggregation of Air Conditioning Loads," Energies, MDPI, vol. 8(12), pages 1-20, December.
    14. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Mingrui Zhang & Ming Gan & Luyao Li, 2019. "Sizing and Siting of Distributed Generators and Energy Storage in a Microgrid Considering Plug-in Electric Vehicles," Energies, MDPI, vol. 12(12), pages 1-17, June.
    16. Wang, Yu & Xu, Yan & Tang, Yi, 2019. "Distributed aggregation control of grid-interactive smart buildings for power system frequency support," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Hirase, Y. & Noro, O. & Nakagawa, H. & Yoshimura, E. & Katsura, S. & Abe, K. & Sugimoto, K. & Sakimoto, K., 2018. "Decentralised and interlink-less power interchange among residences in microgrids using virtual synchronous generator control," Applied Energy, Elsevier, vol. 228(C), pages 2437-2447.
    18. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    19. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    20. Ying Yu & Tongdan Jin & Chunjie Zhong, 2015. "Designing an Incentive Contract Menu for Sustaining the Electricity Market," Energies, MDPI, vol. 8(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:10818-10841:d:56504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.