IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i1p444-461d32355.html
   My bibliography  Save this article

A Static Voltage Security Region for Centralized Wind Power Integration—Part II: Applications

Author

Listed:
  • Tao Ding

    (State Key Lab of Power Systems, Department of Electrical Engineering , Tsinghua University, Beijing 100084, China)

  • Qinglai Guo

    (State Key Lab of Power Systems, Department of Electrical Engineering , Tsinghua University, Beijing 100084, China)

  • Rui Bo

    (Midwest Independent Transmission System Operator (Midwest ISO), St. Paul, MN 55108, USA)

  • Hongbin Sun

    (State Key Lab of Power Systems, Department of Electrical Engineering , Tsinghua University, Beijing 100084, China)

  • Boming Zhang

    (State Key Lab of Power Systems, Department of Electrical Engineering , Tsinghua University, Beijing 100084, China)

  • Tian-en Huang

    (State Key Lab of Power Systems, Department of Electrical Engineering , Tsinghua University, Beijing 100084, China)

Abstract

In Part I of this work, a static voltage security region was introduced to guarantee the safety of wind farm reactive power outputs under both base conditions and N-1 contingency. In this paper, a mathematical representation of the approximate N-1 security region has further studied to provide better coordination among wind farms and help prevent cascading tripping following a single wind farm trip. Besides, the influence of active power on the security region is studied. The proposed methods are demonstrated for N-1 contingency cases in a nine-bus system. The simulations verify that the N-1 security region is a small subset of the security region under base conditions. They also illustrate the fact that if the system is simply operated below the reactive power limits, without coordination among the wind farms, the static voltage is likely to exceed its limit. A two-step optimal adjustment strategy is introduced to shift insecure operating points into the security region under N-1 contingency. Through extensive numerical studies, the effectiveness of the proposed technique is confirmed.

Suggested Citation

  • Tao Ding & Qinglai Guo & Rui Bo & Hongbin Sun & Boming Zhang & Tian-en Huang, 2014. "A Static Voltage Security Region for Centralized Wind Power Integration—Part II: Applications," Energies, MDPI, vol. 7(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:444-461:d:32355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/1/444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/1/444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Ding & Qinglai Guo & Rui Bo & Hongbin Sun & Boming Zhang, 2014. "A Static Voltage Security Region for Centralized Wind Power Integration—Part I: Concept and Method," Energies, MDPI, vol. 7(1), pages 1-24, January.
    2. Jan Pierik & Urban Axelsson & Emil Eriksson & Daniel Salomonsson & Pavol Bauer & Balazs Czech, 2010. "A Wind Farm Electrical Systems Evaluation with EeFarm-II," Energies, MDPI, vol. 3(4), pages 1-15, March.
    3. Antonio Bracale & Guido Carpinelli & Daniela Proto & Angela Russo & Pietro Varilone, 2010. "New Approaches for Very Short-term Steady-State Analysis of An Electrical Distribution System with Wind Farms," Energies, MDPI, vol. 3(4), pages 1-21, April.
    4. John Kabouris & Fotis D. Kanellos, 2009. "Impacts of Large Scale Wind Penetration on Energy Supply Industry," Energies, MDPI, vol. 2(4), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Tao & Lv, Jiajun & Bo, Rui & Bie, Zhaohong & Li, Fangxing, 2016. "Lift-and-project MVEE based convex hull for robust SCED with wind power integration using historical data-driven modeling approach," Renewable Energy, Elsevier, vol. 92(C), pages 415-427.
    2. Liang Wu & Lin Guan & Feng Li & Qi Zhao & Yingjun Zhuo & Peng Chen & Yaotang Lv, 2018. "Optimal Dynamic Reactive Power Reserve for Wind Farms Addressing Short-Term Voltage Issues Caused by Wind Turbines Tripping," Energies, MDPI, vol. 11(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Tao & Lv, Jiajun & Bo, Rui & Bie, Zhaohong & Li, Fangxing, 2016. "Lift-and-project MVEE based convex hull for robust SCED with wind power integration using historical data-driven modeling approach," Renewable Energy, Elsevier, vol. 92(C), pages 415-427.
    2. Liang Wu & Lin Guan & Feng Li & Qi Zhao & Yingjun Zhuo & Peng Chen & Yaotang Lv, 2018. "Optimal Dynamic Reactive Power Reserve for Wind Farms Addressing Short-Term Voltage Issues Caused by Wind Turbines Tripping," Energies, MDPI, vol. 11(7), pages 1-15, July.
    3. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    4. Rodrigo Teixeira Pinto & Sílvio Fragoso Rodrigues & Edwin Wiggelinkhuizen & Ricardo Scherrer & Pavol Bauer & Jan Pierik, 2012. "Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms," Energies, MDPI, vol. 6(1), pages 1-26, December.
    5. Ioannidis, Filippos & Kosmidou, Kyriaki & Makridou, Georgia & Andriosopoulos, Kostas, 2019. "Market design of an energy exchange: The case of Greece," Energy Policy, Elsevier, vol. 133(C).
    6. Perica Ilak & Slavko Krajcar & Ivan Rajšl & Marko Delimar, 2014. "Pricing Energy and Ancillary Services in a Day-Ahead Market for a Price-Taker Hydro Generating Company Using a Risk-Constrained Approach," Energies, MDPI, vol. 7(4), pages 1-26, April.
    7. Dinh Thanh Viet & Vo Van Phuong & Minh Quan Duong & Quoc Tuan Tran, 2020. "Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms," Energies, MDPI, vol. 13(11), pages 1-22, June.
    8. Nikolaos E. Koltsaklis & Athanasios S. Dagoumas, 2021. "A power system scheduling model with carbon intensity and ramping capacity constraints," Operational Research, Springer, vol. 21(1), pages 647-687, March.
    9. Oscar Barambones, 2012. "Sliding Mode Control Strategy for Wind Turbine Power Maximization," Energies, MDPI, vol. 5(7), pages 1-21, July.
    10. David De la Vega & James C. G. Matthews & Lars Norin & Itziar Angulo, 2013. "Mitigation Techniques to Reduce the Impact of Wind Turbines on Radar Services," Energies, MDPI, vol. 6(6), pages 1-15, June.
    11. Wen-Yeau Chang, 2013. "Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method," Energies, MDPI, vol. 6(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:444-461:d:32355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.